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ABSTRACT

The problem of phase ambiguity resolution and �ltering

for interferometric GPS attitude determination is consid-

ered. Traditionally, the resolution of the phase ambiguity

and the �ltering stages were performed separately, with the

�lter formulated on the basis that the phase ambiguity is

correctly resolved. Should the pre-processing stage not re-

solve the ambiguity correctly, erroneous results may occur.

In response, a uni�ed solution is proposed in which the am-

biguity resolution and �ltering processes are combined un-

der a Gaussian Sum Filtering (GSF) framework. The GSF

naturally accounts for the measurement ambiguity by gen-

erating multi-modal probability densities, which leads to a

probabilistic interpretation of the attitude estimates. Sim-

ulations are performed to illustrate the e�ectiveness and

functionality of the proposed solution.

1. INTRODUCTION

There exists a number of applications and �ltering problems

in which measurement ambiguities arise. Normally, operat-

ing limitations or computationally ine�cient pre-processing

stages are required to resolve these ambiguities before pro-

cessing or �ltering may be initiated. In general, these pre-

processing methods are formulated in a deterministic sense.

Subsequently, no statistical measures are available to gauge

the con�dence and signi�cance of the estimates.

A typical example of a practical problem which contains

inherent measurement ambiguity is the Global Positioning

System (GPS) attitude determination system [4, 7, 9, 13,

14]. This system utilises satellite carrier phase interfero-

metric techniques in order to estimate the orientation of an

antenna array. The attitude (�L) is de�ned as the depar-

ture angles from a �xed reference or locally oriented axes

system (L) to a vehicle �xed or body aligned axes system

(B) such that,

�
L =

�
' �  

�
(1)

where ', � and  are the respective Roll, Pitch and Yaw

angles.

Using three or more satellite signals with at least three

antennae, as shown in Figure 1, it is possible to determine

the platform attitude so long as the carrier cycle number

ambiguities can be resolved. Ambiguities arise once the

antenna separation becomes larger than the wavelength (�)
of the carrier signal. This is generally the case, since other
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Figure 1. GPS attitude determination

stages in the navigation system require that the antennae

be placed at the furthest points from one another [12].

Applications of GPS attitude determination systems in-

clude maritime attitude determination to aid multi-beam

echo sounding, precise aircraft attitude determination to

aid Synthetic Aperture Radar (SAR) systems and attitude

stabilisation and control of low-orbit satellites [8].

2. PHASE AMBIGUITY RESOLUTION

Historically, a deterministic formulation involving carrier

phase di�erences between the antennae is employed to re-

solve the phase cycle number (k) ambiguity. Details of these
methods are given in [13].

In order to attain more robust estimates in noisy envi-

ronments, redundant phase measurements and di�erences

are taken. Using this redundancy it is possible to formu-

late an expression for the residual mean square error for

every combination of the phase ambiguities (k). The phase
ambiguity set with the lowest mean square error, under an

exhaustive search, is chosen as the estimate for the phase

ambiguity. It is possible, that the result of this method may

result in some spurious solutions becoming equally, or more

likely than the true ambiguity. Since the proceeding �lter

assumes that the ambiguity is fully resolved, unexpected

results may occur.

3. GAUSSIAN SUM FILTERING

To address the carrier phase ambiguity problem a Gaussian

Sum Filter (GSF) is investigated [1, 3, 5, 10, 11]. Intuitively,

one may view the measurement ambiguity as manifesting

itself as a multi-modal measurement noise probability den-

sity function. This is readily handled by the fundamental

structures and procedures which form the basis of the GSF.
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Figure 2. Carrier Phase Di�erence Measurements

The density functions manipulated by the GSF take the

form of convex sums of Gaussian probability density func-

tions [11] as shown below,

p(x) =

nX
i=1

�i
1

(2�)
m
2 j�j

1

2

exp

n
�
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2
[x��i]

T
�
�1

i [x��i]
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where,

nX
i=1

�i = 1; j�ij > 0 (2)

given that n is the number of approximating terms in the

sum, m is the length of the state vector and �i is the weight
for the i th term.

The �lter structure updates the individual �i and �i us-

ing an Extended Kalman Filter (EKF), while updating the

weighting terms �i using an interpretation of Bayes' The-

orem. Subsequently, the GSF may be viewed as a convex

sum of Extended Kalman Filters operating in parallel.

As each phase di�erence measurement is processed, addi-

tional terms are generated for each of the possibilities aris-

ing from the measurement ambiguity. The weighting terms

are then calculated, with terms containing a negligible �i
being removed. Subsequently, there is no need to conduct

an exhaustive search of all of the ambiguity combinations,

as a large proportion of the search space may be neglect-

ing using this probabilistically justi�ed basis. The process

is repeated for a number of measurements until only one

signi�cant term remains.

4. THE MEASUREMENT MODEL

Figure 2 depicts the measurement construction for a single

phase di�erence measurement. A baseline vector (bLj ) is

constructed as an inter-antenna displacement vector. Since

the baseline length is negligible when compared to distance

from the satellite to the receiver, it is acceptable to assume

that the satellite signals propagate, in the direction of the

line of sight, as plane waves. Projection of the baseline

vector onto the line of sight vector to the satellite (uLi )

results in the ranging di�erence (�rij) de�ned as,

�rij = u
L
i � b

L
j = �(

��ij

2�
+ k) (3)

for the i th satellite at the j th baseline, where ��ij is the
wrapped phase di�erence and k an integer number of carrier

cycles. A line of sight vector may be constructed by con-

sidering the approximate coordinates of the satellites and

the interferometer, which are attained through a standard

GPS navigation solution. It is seen that attitude solution is

relatively insensitive to small deviations from the true line

of sight vector [6].

The baseline vector (bLj ) may be expressed in terms of a

Body or vehicle �xed vector (bBj ) and the transformation

from Body to Local coordinates ([C(�L)LB ]), which is a

function of the attitude vector (�L) [2],

�
C(�

L
)
L
B

�
=

"
c�c s�s'c � c's s�c'c + s's 
c�s s�s's + c'c s�c's � s'c 
�s� c�s' c�c'

#

with s = sin and c = cos. Subsequently, the phase di�erence

measurement may be written as,

��mij
=

2�

�
u
L
i � ([C(�

L
)
L
B ]b

B
j )� 2�k + �ij (4)

where �ij is the measurement noise. Now, one may de�ne

k as,

k = kn +�k; �k = 0;�1;�2; : : : ;�kmax (5)

given that �k is the integer phase ambiguity, kmax is the

maximum phase deviation considered and kn is the nomi-

nal estimate for the integer phase di�erence. The nominal

integer phase di�erence is de�ned in terms of the nominal

attitude estimate (b�L
) as,

kn = b
1

�
ui � ([C(b�L

)
L
B ]b

B
j )c (6)

Subsequently, Equation (4) may be written in the form,

��mij
=
2�

�
u
L
i � ([C(�

L
)
L
B ]b

B
j )� 2�kn + f2��k+�ijg (7)

The term in braces represents the combined measurement

noise whose probability density function is multi-modal in

nature. The phase disturbance (�ij) is modelled as a zero

mean, white Gaussian process. This assumption is imposed

to ensure the brevity of this discussion and is indeed not

a limitation of the GSF. For example, one may model the

multi-path e�ects by a non-Gaussian process [7], which in

turn may be represented as a weighted sum of Gaussian

processes.

Finally, to conform to the GSF structure, the �rst partial

derivative of Equation (7) is taken with respect to the atti-

tude in order to linearise the measurement function. Thus,

the linearised error measurement may be expressed as,

�(��mij
) = [Hij ]��+ f2��k+�ijg (8)

where [H ij ] is de�ned as,

[Hij ] =
@ 2�
�
u
L
i � ([C(�L)LB]b

B
j )

@�L

����
�=�̂

(9)



The remaining partial derivatives are evaluated as fol-

lows,

@[C(�L)LB ]

@'
=

"
0 s�c'c + s's �s�s'c + c's 
0 s�c's � s'c �s�s's � c'c 
0 c�c' �c�s'

#
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"
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#
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Though not addressed in the following simulated analysis,

it is worth noting the mechanisms by which the ambiguity

may be resolved in rotating systems. By considering a sit-

uation in which the rotation of the body (!B) is available,

one may formulate a predictor mechanism for the di�usion

of the attitude estimates between GPS epochs. This is per-

formed in a similar fashion as that for the measurement

function formulation, in that the Euler angle evolution re-

lations [2],

d

dt

"
'
�
 

#
=

"
1 tan � sin' tan � cos'
0 cos' � sin'
0 sin' sec � cos' sec �

#
!
B (10)

are linearised about the attitude estimate.

The body rates (!B) may be made available through in-

ertial gyroscope measurements or through interpretation of

the interferometric phase rates. It is seen that the inertially

aided system, once resolved, no longer requires online ambi-

guity resolution and the results are consistent with those for

the non-rotating case. The case in which the body rates are

inferred from the di�erential phase measurements is decid-

edly more complicated and embodies a sizeable discussion

in its own right.

5. SIMULATION RESULTS

To illustrate the e�ectiveness of this method, consider a con-

�guration which utilises three satellites and three antennas.

The antennae are �xed at known points to a platform which

is at a constant yet unknown orientation. Each of the an-

tennae are placed at a distance of 1 m from the platform

centre, at equal angles of 2�=3. The carrier wavelength (�)
for GPS is approximately 19 cm and the standard deviation

for GPS carrier phase noise is set to 0.25 radians. The true

platform attitude is set to zero, with an initial estimate of

-0.15 radians for each of the attitude parameters. The ini-

tial estimates are assumed uncorrelated with variances of

(0:2)2 rad2. For these initial conditions it is su�cient to

consider only kmax = 2 integer phase ambiguities.

Figure 3 shows the marginal probability densities for (a)

the initial conditions, (b) after processing the �rst di�er-

ential phase measurement and (c) after processing all of

the di�erential phase measurements for the �rst epoch.

Figure 3(b) is particularly informative in that the multi-

modality of the conditional density is evident. Combin-

ing densities of this form, with di�ering orientations, for

each di�erential phase measurement in the current GPS
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Figure 3. Simulated Example

epoch gives the conditional density shown in Figure 3(c).

From this �gure one can see that a spurious mode is dom-

inant, and hence the phase ambiguity remains unresolved.

It should also be noted that the desired solution remains

with a signi�cant probability.

Figure 4 gives the marginal probability densities for the

attitude's Roll and Pitch parameters for the initial condi-

tions, and the �rst two iterations. Each iteration processes

every baseline's di�erential phase measurements for each of

the satellite signals. It is seen that, similar to Figure 3(c),

an ambiguity exists after the �rst iteration (t = 1) for which

a spurious mode is dominant. After processing the mea-

surements for the second epoch (t = 2), this ambiguity is

resolved correctly.

The resulting �lter estimates for the epochs t � 2 are

consistent with estimates obtained through an Extended

Kalman Filter as though the phase ambiguity is known

correctly for all time. The classical method in which the
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Figure 4. Simulated Example

ambiguity resolution and attitude �ltering are performed

sequentially would produce biased estimated as an artifact

of the incorrectly resolved ambiguity at the �rst epoch. It

should be noted that through processing additional mea-

surements from either redundant baselines or satellites, the

ambiguity may be resolved more accurately.

6. CONCLUSION

An alternative methodology for phase ambiguity resolution

in GPS attitude determination was discussed. This proce-

dure utilised a Gaussian Sum Filter in order to characterise

the multi-modality of the conditional densities for the atti-

tude estimates. This multi-modality is inherently induced

through the ambiguous nature of the di�erential phase mea-

surements. It is seen that the GSF formulation provides the

desired ambiguity resolution in simulated scenarios.
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