
ABSTRACT

The National Optics Institute has recently developed an
optical velocimeter composed of two parallel laser beams
for measuring perpendicularly the speed and the length of
vehicles. The system must be capable of measuring speeds
varying from 0 to 150 km/h in both directions with an
accuracy of 1%. This paper focuses on the algorithms and
signal processing aspects of the system. The speed is
measured by estimating the time delay using an FFT-based
cross-covariance method between the signals generated by
the optical velocimeter. The length is estimated using the
speed and the time window corresponding to the entire
veh ic le .  The measurement  a lgor i thm has been
implemented to run in real time on a C31 DSP and a 486
processor.

INTRODUCTION

Optical contactless speed measurements of linearly
moving objects, based on the computation of the cross-
correlation of two time delayed signals, have gained
popularity over the years with the availability of reliable
and low cost optical sensors. The application considered
here involves the perpendicular measurement of vehicles’
speed and length. With the increasing number of vehicles
on the roads, surveillance has become a key factor in the
field of traffic management. The monitoring of the various
traffic parameters, such as speed and flow, requires the use
of sensors. Existing technologies include microwave and
ultrasonic radars, induction loops and piezoelectric tubes.
For certain types of road conditions, the functionality of
these sensors may become limited (e.g. induction loops on
metallic structures, microwave radars in tunnels). In view
of this, the National Optics Institute has developed an
optical velocimeter for measuring perpendicularly the
speed of vehicles [1]. This paper presents the algorithms
that process the optical velocimeter’s signals to estimate in
real time the speed and the length of vehicles on the road.
The specifications state that the system must be capable of
measuring speeds varying from 0 to 150 km/h in both
directions with an accuracy of 1%. The length of the
vehicles must also be measured.

THE MEASUREMENT SYSTEM

Speed estimation relies upon measuring the time required
for a linearly moving object to go over a fixed distance D.
The velocimeter is composed of two eyesafe parallel laser
beams operating at two different wavelengths (see Figure
1) and separated by a distance D. It is assumed that the
axis jo ining the two detectors is paral le l  to the
displacement of the moving vehicle. When a vehicle
passes in front of the velocimeter, the laser light is diffused
on its surface. The diffused light is then focused on the
two photodetectors, each one optically filtered for each
laser wavelength. We thus obtain two signals,x(t) andy(t),
which represent the fluctuations in time of the intensity of
the light diffused by the vehicle. Since the laser beams are
separated by a distanceD, one of the signals is simply a
delayed version of the other.

Upon estimating the delayT betweenx(t) andy(t), the
speed of the vehicle is readily computed as,

. (1)

Furthermore, if we can determine the time windowTL
corresponding to the entire vehicle, then the lengthL of
the vehicle is:
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Figure 1. Operation of the optical velocimeter.
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. (2)

SPEED AND LENGTH ESTIMATION

The sampling period is defined as∆T, i.e., the signals are
sampled att = n∆T, where n is the sample index.
Considering the sampled version x[n] and y[n] of the
band-limited signals x(t) and y(t) respectively, we start
with the convolution between theN-point segmentsx[n]
andy[n] defined as

. (3)

Then their cross-correlation can be written as

, (4)

where -n indicates time reversal andτ the time delay. If
x[n] andy[n] have non-zero mean values, defined asµx
and µy, then these will be accumulated in the cross-
correlation and the position of the maximum value will
become erroneous. To circumvent this, we must subtract
the mean from each signal before computingRxy(τ). The
result of this operation yields the cross-covariance:

. (5)

The computational burden associated withCxy(τ) is
largely reduced if we make use of the frequency domain
representation. In this case, the convolution operation
becomes a multiplication. Thus, definingX[k] andY[k] as
the fast Fourier transform (FFT) ofx[n]-µx andy[n]-µy
respectively, andF-1{ } as the inverse FFT operator, we
obtain

 , (6)

where * stands for complex conjugation. The product of 2
FFTs is actually a circular convolution. To obtain a linear
convolution,x[n] andy[n] must first be zero-padded to 2N
points. According to (6), a total of 3 FFTs have to be
performed in order to computeCxy(τ). Since the input to
the FFT is a complex sequence andx[-n] -µx andy[n] -µy
are real sequences,X[k] andY[k] can be computed using a
single FFT. Letz[n] be the complex sequence

. (7)

Using the linearity property, the FFT ofz[n] is

. (8)

X[k] and Y[k] can then be recovered fromZ[k] using
simple manipulations [3]. The cross-correlation measures
the degree of similarity between two signals as a function
of the time delayτ. In the absence of anya priori
in format ion about the s ignals,  the t ime delayτ
corresponding to the maximum value of the cross-
correlation function is our best estimate ofT. Using this
estimate and the value of D, we recover V from equation
(1). Classical time delay estimators based on correlation
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and covariance functions are not always optimal in a
statistical sense but provide excellent results in the
frequency band where the signals are coherent, which is
the case here. Indeed, we can assume with this application
that the instantaneous speed of the vehicle remains
constant when both signals are being measured over the
length of that vehicle. In other words, distortion of the
correlation peak due to the non-stationarity of the signals,
caused by speed variations of the vehicle during
measurement, is considered here negligible. The
correlation-based estimators are also relatively simple to
implement,  making them sui table for  real - t ime
applications.

Computing the length of vehicles requires the
estimation ofTL, which corresponds to the time during
which the vehicle is in the velocimeter’s field of view.TL
is estimated using a simple threshold-based detection
scheme where the car signatures are being discriminated
against the background signal. A signal segment must be
below the threshold for a minimum period of time in order
to be classified as background, thus specifying the
beginning and the end of the vehicle.

SYSTEM DESIGN SPECIFICATIONS

According to (1) withD being constant, ifV is to have an
accuracy of 1% then the estimated value of T must also
have the same accuracy. Such an accuracy cannot be
reached if the resolution, which is equivalent to the
sampling period∆T, exceeds 1% ofT. Thus, we have

, (9)

i.e., a minimum of 100 samples must be acquired over the
distanceD. For a given speed, we can now determine the
maximum sampling period required. Substituting (9) into
(1), we obtain

. (10)

With D equal to 10 cm andV equal to 150 km/h, the
maximum sampling period is 24µsec. We thus require a
maximum sampling rate of 41667 Hz.

In order to keep the same relative resolution
throughout the entire range of measurable speeds (which
covers 2 orders of magnitude) and to avoid oversampling
x(t) andy(t) unnecessarily, the sampling rate must be
adapted to the average speed of the traffic. The two signals
are subsampled by an integer factor, i.e., samples are taken
at a fraction of the maximum sampling rate in order forT
to lie between 100 and 199∆Ts. If the four last estimated
values ofT lie outside of this range, then the sampling rate
is changed accordingly. Figure 2 shows the subsampling
factor used versus the speed of the vehicle.

The detection of the presence of a vehicle is done by
comparing each signal to a threshold which was
determined at initialization time. Assuming that vehicles
diffuse more energy than the background, the threshold is
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set to a value above the maximum background level
recorded. A detection occurs if either signal remains above
its threshold forND consecutive samples. With a
maximum measurable speed of 150 km/h, the value ofND,
once converted to time, should not exceed 0.5 msec, which
represents a vehicle displacement equal to 2 cm.

Once the required sample density is determined, the
segment length can be set. Upon detecting a vehicle, two
segments ofN points are acquired simultaneously.N
should be chosen such that the segments cover a length of
at least 1 meter on the vehicle. This is to ensure that we
have enough information fromx(t) andy(t) to properly
determineT. ChoosingN=2048 yields segment lengths
which cover between 1.024 and 2.048 meters on the
vehicle. Also,N is a power of 2 and thus is well suited for
the FFT algorithm.

Upon estimatingT, the end of the vehicle must be
detected. This occurs when both signals have returned to a
level below the threshold after a minimum period of 5T,
which corresponds to a vehicle displacement of 5D=50
cm.

REAL TIME IMPLEMENTATION

The algorithms for calculating the speed and the length of
vehicles are distributed on two processors: a TMS320C31
DSP with a 60-nsec cycle time and a 80486DX2 PC
running at 66 MHz. The C31 is responsible for sampling
the signalsx(t) andy(t), estimating the time delay between
them upon detecting a vehicle, and sending the time delay
plus the signature of the entire vehicle to the 486. The 486
then computes the speed and length of the vehicle.

The program running on the C31 is a state machine
which comprises four states, as shown in Figure 3. The
sampling of the signalsx(t) andy(t) is time critical and
thus was implemented in an interrupt service routine
(ISR). To ensure that the algorithm can actually operate in
real time, we must determine the process time associated
with each state. The first and last states both work on a

Figure 2. Subsampling factor versus speed.
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sample-to-sample basis with worst case process times
(including one ISR) shorter than∆T. The other two states
are more critical. Their combined process time includes
the time to acquire theN-point segments and the time to
computeT (including one ISR every∆T).

Figure 4 shows the combined process time converted
to vehicle displacement versus the speed of the vehicle.
The jagged profile is caused by the subsampling factor.
This graph shows that it is possible for a vehicle to have
moved passed the velocimeter by the time the algorithm
starts looking for the end of the vehicle (e.g. a vehicle less
than 4.1 m long going at 100 km/h). Thus, the ISR must
save a copy of the signalx(t) while T is being estimated
and until both signals have returned below the threshold.
Then the C31 passes the signature of the entire vehicle and
the estimate ofT to the 486 and resumes to the first state.
The 486 then computes the speed of the vehicle and
analyzes the signature in order to identify where the end of
the vehicle is actually located.

Detect beginning of vehicle

Acquire segments

Estimate time delay

Detect end of vehicle

Figure 3. State machine running on the C31.
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Figure 4. Vehicle displacement during segment
acquisition and delay estimation versus speed.
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EXPERIMENTAL RESULTS

Tests were performed using the optical velocimeter in 2
different configurations: above the road and across the
road. While the first configuration can only see a single
lane, the second configuration allows the velocimeter to
survey multiple lanes. However, in such a configuration,
the detection success rate is limited due to vehicle
overlaps. Figure 5 shows the signatures of the side of a
typical automobile, 50 cm above the ground when the
velocimeter was looking across the road.

When sampling the signals, the polarity is inverted by
the A-to-D converters. This explains why the weak
background signal, whose level fluctuates around +30000,
sits above the car signature. Although this example
contains some obvious characteristics about the vehicle
(e.g. the two wide upward bumps correspond to the
wheels), all signatures from vehicles of the same class do
not necessarily bear the same amount of detail. Figure 6
shows the cross-covariance function between the signals
of Figure 5. The computation was performed on segments
of 57 msec (1.54 m on the car). The maximum value is
located at a delayT of 3.7 msec which yields a speed of
97.3 km/h. WithTL=0.146 sec, the length of the car is 3.95
m.

The performance of the algorithm was evaluated in
the fie ld .  Tests  were per formed a long a 3- lane
metropolitan highway. The detection success rate was
90%. Vehicle flows requiring as much as 5 detections/sec
were successfully processed. The misses due to vehicle
overlaps were visually evaluated to account for 15% of the
total count. The count recorded by the algorithm was
sometimes higher than the actual number of detectable
vehicles since trucks with 1 or 2 trailers would be
perceived as several vehicles. Our speed and length
estimation schemes gave correct results 95% of the time.
Faulty speed estimations occur when there are not enough
features common to both car signals or when the signal-to-
noise ratio is very low.

Figure 5. Signatures of the side of a typical car.
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CONCLUSION

An algorithm that estimates the speed and the length of
vehicles in real time was presented. The results obtained
show that the system constitutes a promising technology
in the field of transportation. Target applications include
police radar, remote sensing for vehicle statistics and
traffic surveillance. As part of further studies, the 1%
accuracy of the speed estimates will be verified in the field
using an independent calibrated instrument. The vehicle
detection scheme will be improved in order to adaptively
follow the background level as the climatic conditions
change, and to allow background levels to lie within the
dynamic range of the signals. The hardware is being
reviewed to consider a single DSP architecture with a
shorter cycle time.
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Figure 6. Cross-covariance between the
signals of Figure 5.


