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ABSTRACT

This paper proposes a novel array architecture for full-search
block matching motion estimation. The design efforts are focused
on transforming the array computation in a way that minimizes
the memory and I/O costs while satisfying the highest throughput
requirements. Compared with the existing architectures, this one
ensures feasible solutions for the HDTV picture format with twice
lower memory requirements, minimal I/O pin count and 100%
processor utilization. The architecture features regular and simple
interconnects and is quite suitable for VLSI implementation.

1. INTRODUCTION

1.1. Motivation
Full Search Block Matching (FBM) is the basic algorithm adopted
for video coding applications. Having successive video frames
divided into blocks of (N � N ) pixels, the FBM determines a
displacement vector for every reference block in the current frame,
by comparing it with all candidate blocks within the search area of
size (N + 2p)2 surrounding the position of the reference block in
the previous frame. The position (m;n) of a candidate block that
results in the minimum distortion defines the motion vector v:

Z(m;n) =

N�1X

i=0

N�1X

j=0

jy(i +m; j + n)� x(i; j)j;

�p � m;n � p � 1 (1)
v = arg min

�p�m;n�p
Z(m;n) (2)

The FBM algorithm provides optimal precision, regular data flow
as well as higher parallelism, a characteristic that is advantageous
for VLSI implementation. However, it is an extremely time
consuming process, since (2p)2 comparisons have to be computed
for each of the displacement vectors in a frame. If a frame has
720�576 pixels (standard TV), and a frame rate of 25Hz, over
900 million operations on 6-16-bit data are required for p = 8,
N = 16.

A number of hardware architectures have been proposed to
cope with real time and high volume requirements. References
[1-3] give good surveys of these. These architectures make use of
massive pipelining and parallel processing which are provided by
systolic arrays [4,7-10], linear arrays[6] or tree-like structures[5].
Despite differences, all of the architectures one feature in common:
they all assume that image data is stored in a memory external
to the processing array. Therefore the architectural solutions are
focused on the data flow within processor element (PE) array to
keep the PE’s as busy as possible and at the same time minimize
the required I/O bandwidth. In order to reduce the I/O count, the
architectures include either an "on-chip" RAM memory to store
the search area / reference block or a large number of line buffers
or pipelined register chains to broadcast the data between the PEs
during the computational process. As result, the total memory used
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Figure 1. The proposed architecture

for storing the search area / reference block is duplicated in the
motion estimation system, increasing its size. Since all the existing
architectures require two separate memories for storing the current
frame and the previous frame of 900 KByte each (for the HDTV
format), more than 70% of the total system area is occupied by
memory units! Hence, efficient memory utilization becomes one
of the most important design problems, especially for portable
applications.

1.2. Contribution
In this paper, we propose a new distributed memory architecture
for full-search block matching motion estimation. In our design,
explicit provisions have been made to keep the total memory size
and the number of transfers as small as possible, while maintain-
ing the high throughput that is required for HDTV applications.
Compared to previously proposed architectures, our architecture
neither requires an external memory nor large register banks for
data storage and transfer; it ensures minimal I/O bandwidth, pro-
vides 100% processor utilization and is linearly scalable. It features
a regular and simple interconnect scheme and is suitable for VLSI
implementation.

2. THE ARCHITECTURE

The proposed architecture consists of a two-dimensional mesh
array of (2p)2 PEs with wrap-around connections and the minimum
displacement block (MDB) at the output of the array, as it illustrated
in Figure 1. The mesh array computes equation (1) while the MDB
implements (2). In the sequel, we will assume that p = N=2 which
is almost always acceptable in practice.

Two main features distinguish our architecture from other 2-D
mesh-arrays: (1) non-overlapping memory distribution between
PEs; (2) dynamic memory sharing between current image and
previous image.

2.1. Memory distribution
The system memory is distributed between the PEs such a way that
each PE is given a dedicated portion of the search area. The data



(b)

X

mesh-array

P(0,0) P(0,1) P(0,2)

P(1,3)P(1,1) P(1,2)

P(2,3)P(2,2) P(2,0)

P(0,3)

P(1,0)

P(2,1)

P(3,0)P(3,3) P(3,1) P(3,2)

3,0 3,1 3,2P P P

3,0 3,1 3,2
3,4 3,5

3,3

3,3P2,0 2,1 2,2P P P

2,0 2,1 2,2
2,4 2,5

2,3

2,3P

(a)

0,1

X

0,0

0,2

0,0 0,2 1,0 1,1 1,2P P P P P

1,1

1,0

1,2

0,3
4,3

0,2
0,6

0,0 0,1
0,4

1,0 1,1 1,2
1,4

4,0 4,1
4,4

Y

4,5 5,4
5,0 5,1

5,5

0,5 1,5 1.6
1,3
5,3

1,3

0,3

0,3P 0,4P 1,3P

2,1

2,0

2,2

2,3

3,1

3,0

3,2

3,3

4,2
4,6

5,2
5,6 6,4

6,0

2,6

6,5 6,6
3,66,3

Figure 2. Hardware mapping for N = 4 and p = 2: (a) grouping of computations and data; (b) allocation of the groups in array

to be processed by the PE(n;m) is stored in its local memory,
LM(m;n). In order to obtain a non-overlapping data distribution
over the LMs, we group the computations that are executed on the
same search area pixels or on pixels whose coordinates differ by
q � (2p); (q = 1; 2; : : :) and then map each group to a proper PE
of the array. Figure 2(a) illustrates the assignment for N=4 and
p=2. Here, vertical lines denote the search area pixels, horizontal
lines denote the current block pixels, black circles depict the AD-
operators, patterns show the PEs, rectangles represent contents of
the LMs in the corresponding PEs. Since, there is no data overlap
between the LMs, matching of all the search area pixels against
a reference block pixel can be done in parallel. This releases us
from the burden of iterative search area broadcast (another big
limitation of other architectures) and allows us to reduce both the
number of latches in the design and, which is very important,
power consumption. In general, the number of transfers is reduced
by a factor of (2p)2. The only data which needs to be moved
between the PEs is the accumulated AD-term. So, the number of
wiring interconnections which have to be routed at the layout stage
is also decreased. As result, the VLSI routing becomes regular and
simple.

In addition, explicit provisions are made during hardware map-
ping to localize the PE interconnections in the mesh. Due to
associativity of summation (1), a group of computations, P (m;n),
can be assigned to any PE in the row m. However, the closest
neighboring connections emerge only if the assignment is done in
a ‘‘left-rotate’’ fashion, that is by mapping the group P (m;n) to
the element (m;n �m) , as it shown in Fig.2(b). In this way, a
regular and simple VLSI implementation is ensured.

2.2. Memory sharing
In order to efficiently utilize the memory space, we apply a gradual
memory renewal concept, when pixels of the current frame replace
pixels of the previous frame that are no longer needed. At every
moment in time, pixels of a certain region of the previous frame are
being read by the PEs, while another region is being overwritten
with new pixels. Figure 3 illustrates this concept for two adjacent
reference blocks (labeled with thick solid lines) of size N � N
and displacement p. Due to displacement in the search areas for
these blocks, the region patterned by black becomes vacant after
processing of the block 1. In case when N � 2p, the region size

Vacant area for 
storing of block1

2

Search area of block 2p

N

Np

1

Figure 3. An illustration of the memory sharing concept.

becomes larger than N2. Hence, memory allocated for storing this
part of the previous frame can be efficiently used for storing the
current block data without degrading the quality of the algorithm.
As result, no other memory units are needed except input buffers
to store N rows of the current frame.

In the proposed architecture, motion estimation is performed
block by block in a raster scan order. Fortunately, for the block
size of N �N pixels and the search range of p = N=2 pixels, the
data required for the adjacent blocks can share the same memory
and need not to be loaded. Figure 4 shows a general memory
mapping concept. The bold lines in this figure define the pixels
belonging to the search area of the first block, dotted lines define
the pixels covered by the search area of the second block. As can
be seen, the local memories are of different sizes, with the largest
of the PE(0,0). Note, that for the standard TV format of 720� 576
pixels, N=16, p=8, the size of the largest memory unit is 3 KByte
only, while majority of the LMs are of 1.5 KByte each.

2.3. PE organization
Figure 5 shows the internal structure of a PE. Each PE is divided
in a two stage pipeline. The first stage is constructed by Absolute
Difference Calculator (ADC) and the second by the adder and
RAM. The ADC computes the absolute difference (AD) between
the search pixel datum, y(m+ i; n+ j), stored in the register (y)
and the reference pixel, x(i; j), fed from the input bus, X. After
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Figure 6. Data flow in the 4x4 array architecture
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Figure 4. General data distribution between the LMs

being delayed one clock cycle by latch, Y , the AD value is added
to the partial sum stored in the register Z , and the result is written
to the register Z of its right or down-neighbor, depending on the
control of the multiplexor (mx). At the same stage, the RAM reads
its address (A) to the register y, or receives in (A) data stored in the
FIFO filex. Due to regular data flow in the diagonal direction (from
bottom-left to the top-right), no complicated address generators
are needed.

2.4. The system operation
We assume that before a new current block processing, all PEs
have zeros in registers Z and initial search area pixels y(0+m; 0+
n);�p � m;n � p� 1, in the registers y. The operation begins
with broadcasting a current block pixel, x(i; j), to all the PEs.

In the clock cycle (t) each PE executes in parallel three disjoint
operations: (1) computes the AD value, Yt = jyt�1 � x(i; j)j, to
be stored in its register Y ; (2) adds the content of its register Z to
the AD value, Yt�1, calculated at the previous clock cycle (t� 1)
and writes the result toZ registers of its right or down-neighboring
PEs; (3) reads a new search area pixel to the register y, or writes
the pixel from the FIFO file x to the RAM. Since we assume that
the current block pixels enter the system in a row-based fashion,
the right neighbors are selected each of [0;N � 1] cycles, while
the down-neighbor is chose at the end of the row, that is in each
N cycle. Thus during the N steps, the (2p)2 absolute differences
calculated in the first clock step are iteratively moved along the
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Figure 5. The PE structure

rows N times; each time accumulating the result computed at the
PE they visit.

Figure 6 illustrates the data flow in array Fig.2(b) by
outlining the results of computations in the 5 elements
P (0; 0); P (0; 1); P (0; 2); P (0; 3) and P (1; 0) during the first 5
clock steps. The column (X) in this figure shows the current block
data. The PE columns define contents of the registers Y and Z
for each PE. As can be seen, the accumulation process is dynamic;
unlike those of other architectures. The sum, Y + Z , computed
in the PE(0,0) at the clock cycle 1 travels the PEs in the right
direction, each time accumulating a new AD-term. (The patterns
show the operands added in the corresponding clock step). At the
end of cycle 3, the PEs write the sums to the registers Z of their
down-adjacent PEs. Thus the results accumulated in PEs of the first
row will be stored in the Z registers of the second row, while the
Z registers of P (0; 0); P (0; 1); P (0; 2); P (0; 3) will receive data
accumulated in P (3; 0); P (3; 1); P (3; 2); P (3; 3), respectively.

Generally, after N2 clock cycles, all pixels of the current
block are processed and (2p)2 distance measures are available
simultaneously. The minimum of them is determined in the
min.displacement block in parallel to processing of a new current
block in the array.

Figure 7 shows the distribution of memory accesses in the PEs
during the computations. The first two columns in this figure are
the same, as in the Fig.6, the P-columns shows data to be read
from or write to (grey patterns) the local memory of the P (m;n)
in the corresponding clock cycle. Due to RAM’s inability to
perform simultaneous read/write, the current block data is written
to the memory with a delay to its arrival time on the system input.
For example, the x(0; 2) pixel arrives in clock cycle 3, but the
PE(0; 2) writes it to memory only in the clock cycle 4. Every PE
makes one write and several read accesses to its RAM during one
block processing. However, the overall number of accesses to the
distributed memory is quite low, yet all the PEs are 100% utilized.



Table 1. Comparison results: Video Format CCIR Rec.601, N = 16, p = 8
Reference #PE Memory # I/O # clock cycles fmax

size (KB) per block per frame /sec
[1] 256 2(450) 136 2p(N + 2p� 1) 496 803520 49
[4] 256 2(450) 16 (N + 2p� 1)2 961 1,556820 25
[5] 512 2(450) 2,056 (2p)2

+ log2N + 2 262 433,872 92
[6] 16 2(450) 32 N 2

(2p) 4,096 6,635,520 6
[7] 256 2(450) 136 N 2

+ 2p(N + 2p� 1) +N 768 1,244,160 32
[8] 256 2(450) 32 N 2 256 423,936 94
Our 256 455 16 N 2 256 414,720 96

Table 2. Comparison results: HDTV Format, N = 16, p = 16
Type #PE Memory # I/O # clock cycles fmax

size (KB) per block per frame /sec
[1] 256 2(900) 136 1,504 5,414,400 7
[4] 256 2(900) 16 2,209 7,952,400 5
[5] 512 2(900) 2,056 1,034 3,686,410 10
[6] 16 2(900) 56 4,096 14,745,600 3
[7] 256 2(900) 136 1,776 6,393,600 6
[8] 1024 2(900) 80 256 933,120 42
Our 1024 924 16 256 921,600 42

3. COMPARISON

The comparison of the proposed architecture to the other existing
architectures is presented in Table 1-2. The video broadcast format
(CCIR Rec.601) with N = 16, p = 8 and the HDTV picture
format with N = 16, p = 16, and clock period of 25 ns are used.
In Table 1,2, the number of PEs, the total memory size, the I/O
count, the number of clock cycles required to estimate a reference
block and a frame, and the maximum number of frames to be
estimated per second (fmax=s) have been compared based on the
technique proposed in [8].

Comparing with other architectures, our architecture ensures
feasible solutions for the HDTV picture format with the minimum
number of I/O pins and as twice as less memory size. In contrast to
[8], where each first block in a row is evaluated two times slower
than the others, our architecture processes all the image blocks
with equal speed (256 clock cycles per block). As result, it can
estimate the maximum number of frames per second.

Preliminary layouts indicate that the physical area of a motion
estimation chip with N = 16, p = 8 is approximately 2/3 smaller
than the total area of a conventional motion estimation system.
Detailed chip design is in progress.
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