
A NEW PIPELINED ARCHITECTURE OF THE LMS ALGORITHM WITHOUT

DEGRADATION OF CONVERGENCE CHARACTERISTICS

Katsushige Matsubara, Kiyoshi Nishikawa, and Hitoshi Kiya

Dept. of Electronics and Information Engineering
Tokyo Metropolitan University

1-1 Minami Osawa, Hachioji, Tokyo, 192-03 JAPAN
Tel: +81 426 77 2745 Fax: +81 426 77 2756

E-mail: kiyoshi@eei.metro-u.ac.jp

ABSTRACT

This paper proposes an adaptive algorithm, which can be
pipelined, as an extension of the delayed least mean square
(DLMS) adaptive algorithm. The proposed algorithm pro-
vides a capability to achieve high throughput with less degra-
dation of the convergence characteristic than the DLMS al-
gorithm. An architecture for pipelined implementation of
the proposed algorithm is considered, and based on this,
the conditions for the implementaion are derived. An e�-
cient implementation of the architecture with less hardware
is also considered.

1. INTRODUCTION

This paper proposes an adaptive algorithm that can be
pipelined as an extension of the delayed least mean square
(DLMS) algorithm. Based on the proposed algorithm, we
can achieves the pipelined adaptive �lters which provides
high throughput with less degradation of convergence char-
acteristics.

The pipelined implementation of adaptive algorithms
to achieve high throughput of the adaptive �lters is con-
sidered so far. Several architectures of the RLS (recursive
least squares) algorithm are considered[1] because its recur-
sive structure is well-suited to implementation with systolic
arrays. In such an implementation, however, each array
requires complex operations (e.g., division or square-root
calculation) so the implementation is complicated and this
complication makes it hard to implement su�ciently long
�lters required in applications. The pipelined implementa-
tion of the LMS algorithm has therefore been considered by
several researchers because of its simple structure. The orig-
inal LMS algorithm, however, cannot be pipelined because
it has a recursive loop in its �lter update formula[2]. The al-
gorithm has therefore been modi�ed to enable its pipelined
implementation, and two modi�ed algorithms have been
proposed so far: the relaxed look-ahead pipelined LMS
(PIPLMS) algorithm[2], and the DLMS algorithm[3]. Al-
though the DLMS can be considered a special case of the
relaxed look-ahead technique, it is superior in terms of the
convergence characteristics. Therefore, the DLMS is pre-
ferred in applications.

The DLMS achieves pipelined implementation of the
LMS by inserting delays between taps of an adaptive �l-

ter. Although the DLMS can be pipelined, its convergence
characteristics become worse as the amount of delay D in-
creases. To reduce the amount of delay, a new architecture
for the DLMS has been proposed[4][5]. Although this re-
duction improves the convergence characteristics, it causes
some degradation of the throughput. Therefore, a method
for improving the convergence characteristics without de-
creasing the amount of delay is needed to satisfy both the
requirements for high throughput and good convergence.

We propose a new pipelined architecture based on the
proposed algorithm that is an extended version of the DLMS
algorithm. The convergence characteristics of this new al-
gorithm can be improved independently of the amount of
delay while maintaining high throughput. A method for
implementing the proposed algorithm is also proposed, and
techniques for reducing the required hardware are consid-
ered.

2. THE PROPOSED ALGORITHM

In this section we describe the proposed adaptive algo-
rithm and show that the proposed algorithm achieves high
throughput with less degradation of the convergence.

2.1. Problem of the DLMS algorithm

First, we point out the problem of the DLMS algorithm.
The DLMS enables the hardware implementation of the
LMS by inserting the delay D in the error feedback path,
as shown in Fig. 1. The DLMS[3] is given as

w(n + 1) = w(n) + �e(n �D)x(n �D) (1)

e(n�D) = d(n�D) � xT (n �D)w(n�D); (2)

where � is the step size parameter. w(n) is the tap-weight
vector and x(n) is the tap-input vector of the adaptive �lter:

w(n) = [w0(n); w1(n); � � � ; wN�1(n)]
T

x(n) = [x(n); x(n � 1); � � � ; x(n �N + 1)]T

where N is the length of the �lter and T indicates the trans-
pose of a vector. We can realize the pipelined implementa-
tion of the DLMS algorithm by replacing the delay D using
the retiming technique[6].

When the DLMS is pipelined, higher throughput can
be achieved as D increases under a given �lter length N .
Thus, in the DLMS, the amount of delay D is selected as
D = N to realize the highest throughput under N . How-
ever, on the other hand, this increasing of D narrows the
selectable range for �. The convergence characteristic of the
DLMS therefore depends on the length of �lter N . That is,
convergence becomes poor as N increases.

2.2. Derivation of the Proposed algorithm

Next we derive the proposed algorithm. We consider reduc-
ing the e�ect of the delay by adding a new term to (2). We
obtain the next equation by substituting (2) into (1):

w(n + 1) = w(n) + �d(n �D)x(n�D)

��x(n �D)xT (n�D)w(n�D): (3)

The e�ect of the delay D is expressed in the time lag be-
tweenw(n) in the �rst term and w(n�D) in the third term
in the right-hand side of (3). We can say that reduction of
the e�ect of D is achived if D in w(n�D) can be decreased.
For that purpose, we propose to expand w(n �D) using �
pairs of e(n)x(n). From (1), we can express w(n �D) as

w(n�D) = w(n � (D � �))

�

��1X
i=0

�e(n � 2D + i)x(n� 2D + i): (4)

Using w(n� (D � �)) in (4), we can rewrite (2) as

e(n �D) = "�(n�D) + ��(n): (5)

where "�(n� d) and ��(n) is given by

"�(n �D) = d(n �D)

�x
T (n�D)w(n� (D � �)) (6)

��(n) =

��1X
i=0

�e(n � 2D + i)

�x
T (n �D)x(n � 2D + i): (7)

By adding ��(n) to e(n � D), we can generate the error
sigal "�(n � D), which can decrease the delay from D to
D� �. Note that the expansion method in (4) through (7)
can be regarded as a new look-ahead transformation.

Using "�(n � D) as the error signal, we propose a new
algorithm. The �lter update formula of the proposed algo-
rithm is given as

w(n + 1) = w(n) + �"�(n�D)x(n�D); (8)

where

"�(n �D) = d(n �D)

�x
T (n �D)w(n �D) � ��(n): (9)

In this equation � is the parameter that enables us to control
the convergence property of the algorithm and its value
must be selected as in the range

0 � � � D: (10)

By adjusting the parameter � we can control the conver-
gence characteristic of the algorithm from that of the DLMS
algorithm to that of the LMS algorithm. Namely, when
� = D the algorithm reduces to the LMS algorithm and
when � = 0 it reduces to the DLMS algorithm. Note that
the case of � = D is already derived in [7] and the proposed
algorithm therefore includes [7] as a special case. The equiv-
alent signal ow graph of the proposed algorithm is shown
in Fig. 2.

w(n) +

d(n)

x(n) +-

D
e(n-D)

Figure 1: Equivalent structure of the DLMS algorithm: D
shows the amount of delay.

w(n)

εδ(n-D)

δ

+-x(n)
+

δ

δD-

d(n)

Figure 2: Equivalent structure of the proposed algorithm:
D shows the amount of delay and � is the parameter for
adjusting the convergence characteristic.

-350

-300

-250

-200

-150

-100

-50

0

50

0 200 400 600 800 1000 1200

M
SE

[dB
]

iteration

(DLMS)

µ

µ
µ

 =10, =0.08

 =0, =0.01
 =5, =0.05

δ

δ
δ

Figure 3: Convergence characteristics of the proposed algo-
rithm with various values for �.

2.3. Simulation

Here we show simulation results to demonstrate the e�ec-
tiveness of the proposed algorithm. We simulated a sys-
tem identi�cation problem with an unknown system of tap
length 10. We set the length N of the adaptive �lter as
N = 10 and set the delay D = 10. Three di�erent values
were used for �: � = 0, 5, and 10. Note that � = 0 cor-
responds to the DLMS algorithm and � = 10 corresponds
to the original LMS algorithm. In Fig 3, the simulation
results are shown. From the �gure, it is known the conver-
gence improves as � increases.

3. PROPOSED IMPLEMENTATION METHOD

This section describes the pipeline implementation of the
algorithm proposed in the previous section. As can be seen
from (7), the calculation of �(n) does not depend on w(n),
and w(n) can be pipelined using the conventional tech-
niques, e.g., the DLMS algorithm. Therefore what we need
to consider is the pipeline implementation of �(n).

3.1. Pipeline implementation of �(n)

Fig. 4 depicts the signal ow graph for calculating �(n).
As shown in this �gure, the architecture can be divided into
two parts, A and B. Part A is for calculating the products
x(n�D � k)x(n �D � k � i), and part B is for summing
up the products of multiplication of those results by e(n).

x

x

x

e(n-D)µ

x

x

x

x

Dx(n)
D-

D-

δ
δ

Λδ(n)

A-part B-part

N

δ

: binary tree adder

: multiplier

: latch

Figure 4: Signal ow graph for calculating �(n).

For pipelining the circuit we use the delays in both
parts, D and D� �. By applying the retiming technique[2]
to these delays, as in the DLMS, we can achieve the pipelined
implementation of the circuit shown in Fig. 4. In this case,
however, the condition for the parameter � will be di�erent
from (10) as is shown in the following.

3.2. The condition on � for pipeline implementation

We de�ne the times required for one multiplication and
one addition as �m and �a, respectively, and we assume
�m = ��a, where � is a real number. The times required to
calculate for parts A and B are expressed as

�AP = (�+ dlog
2
Ne)�a (11a)

�BP = (�+ dlog
2
�e)�a: (11b)

Let tdt is the given required clock rate for the �lter. To
satisfy tdt, the critical path tcp of the �lter should be in the
range

tcp � tdt: (12)

For satisfy this condition, the delays in two parts A and B
are replaced using the retiming technique.

The following amounts of delay are required for pipelin-
ing parts A and B,

DA =

l
(�+N � 1)�a

tdt

m
(13a)

DB =

l
(� + � � 1)�a

tdt

m
(13b)

where dxe is the smallest integer larger than x. DA and DB

are the required amount of delay for pipelining parts A and
B. From (13), we can see that D in part A and D � � in
part B must satisfy the following conditions:

D � DA +DB (14a)

(D � �) � DB: (14b)

In the DLMS algorithm the amount of delay D is �xed
as D = N , so the above two conditions are reduced to the
following condition:

� � D �DB = N �DB : (15)

This is the condition for � to achieve the pipelined imple-
mentation of the proposed algorithm. This condition shows
that the selectable range of the parameter � becomes nar-
rower than (10) when the proposed algorithm is pipelined.
This shows that the algorithm proposed in [7] cannot be
pipelined because it does not satisfy (15). Note that, under
condition (14), we can select D as smaller than N using the
architecture proposed in [4] if the resulting throughput can
satisfy the required speci�cation. Then � must be selected
according to the �rst term in the right-hand side of (15).

Under conditions (14) and (15), the values for � and D
must be determined according to the required speci�cations
and the acceptable amount of hardware. Once the values
for � and D are determined, the pipeline implementation
of the proposed algorithm will be obtained by inserting the
delays D and D� � between the functional units in both A
and B of Fig. 4.

4. EFFICIENT IMPLEMENTATION

The amount of hardware required in the direct implementa-
tion of the proposed architecture is larger than that of the
DLMS because of the extra calculation for �(n). Here we
will consider a method for reducing the amount of hardware
required for its implementation.

4.1. Scheduling of operators

We use the scheduling technique to reduce the amount of
hardware required. Note that in the following we assume
to use the operators, which have pipelined structures, for
e�cient calculations.

First let us consider the COs in both the whole of part
A and the multiplications in part B. In these parts, the
identical calculations are done independently. We schedule
the COs in these parts as follows:

1. The required time tm for processing each pipeline
latch is calculated as

tm =
l
(2� + dlog

2
Ne+ dlog

2
�e)�a

D

m
: (16)

2. Let R be the number of reuses of each operator.

3. The critical path in this case is given as

tcp = tm + (R� 1)�a: (17)

4. If tcp satis�es the condition tcp � tdt we can use the
scheduling. Otherwise we should repeat the process
with either decreasing R or increasing D.

The numbers of multipliers hm and adders ha1 required
for pipelining are given as

hm = 2
l
�

R

m
(18)

ha1 = (N � 1)
l
�

R

m
(19)

Figure 5 shows an example of tm = 5 and R = 2 where one
multiplier and six adders are used twice.

t m

+

+ + +

+++++

++x +

x

R=2

t cp

Figure 5: Reusing of the operators.

Now we consider the additions in the part B, where
processing time is expressed as dlog

2
�e�a and where the

number of stages required for pipelining is therefore given
as

Lpip =
l
dlog

2
�e�a

tdt

m
: (20)

In each stage the number of adders required is equal to the
number of additions in the �rst step and we can reuse the
adders in the next additions. Therefore, the number ha2 of
adders required in this part is

ha2 =

Lpip�1X
i=0

j
�

2i

k
; (21)

where bxc is the largest integer smaller than x.

4.2. The e�ect of scheduling on the performance

From the description in the previous section, the required
numbers of multipliers and adders to calculate ��(n) are
given as

hm = 2

l
�

R

m
(22)

ha = (N � 1)

l
�

R

m
+

Lpip�1X
i=0

j
�

2i

k
: (23)

Let us de�ne the total cost of hardware as

C = Cmhm +Caha; (24)

where Cm is the cost for one multiplier and Ca is the cost
of one adder. As the index of the performance of the �lter,
we use the upper limit of the applicable clock rate

S = 1=tcp: (25)

Figure 6 show the relation between the clock rate S and
the hardware cost C. From the results of the synthesis using

PARTHENON[8], the costs Cm and Ca were determined as
Cm = 20 and Ca = 1. Other conditions are N = 30, � = 20,
and tm = 5. From Fig. 6, we can see that the clock rate
falls only 20% if we reduce the hardware cost by 50%.

0 200 400 600 800 1000 1200 1400

R=1
R=2

R=3
R=4

R=5

100

80

60

40

20

0

Hardware cost

C
lo

ck
 R

at
e/

m
ax

 [
%

]

Figure 6: Clock rate vs. hardware cost

5. CONCLUSION

In this paper, we proposed an adaptive algorithm that can
be pipelined. It is shown that the proposed algorithm pro-
vides a capability to achieve high throughput with less de-
gradiation of the convergence characteristics than the DLMS
algorithm. An implementation method of the proposed al-
gorithm was considered and the condition for the proposed
algorithm to implement in pipelined fashion was derived.

6. REFERENCES

[1] K. J. Raghunath and K. K. Parhi, \A 100 MHz
pipelined RLS adaptive �lter," in Proc. IEEE
ICASSP'95, pp. 3187{3190, 1995.

[2] N. R. Shanbhag and K. K. Parhi, Pipelined Adaptive
Digital Filters. Massachusetts: Kluwer Academic Pub-
lishers, 1994.

[3] G. Long, F. Ling, and J. G. Proakis, \The LMS algo-
rithm with delayed coe�cient adaptation," IEEE Trans.
Acoust., Speech & Signal Process., vol. 37, pp. 1397{
1405, Sept. 1989.

[4] K. Matsubara, K. Nishikawa, and H. Kiya, \Pipelined
adaptive �lters based on delayed LMS algorithm," IE-
ICE Trans. (in Japanese), vol. J79-A, May 1996.

[5] K. Matsubara, K. Nishikawa, and H. Kiya, \Pipelined
adaptive �lters based on two-dimensional LMS algo-
rithm," in Proc. ITC-CSCC, (Seoul, Korea), pp. 832{
835, 1996.

[6] C. E. Leiserson, F. Rose, and J. Saxe, \Optimizing syn-
chronous circuitry by retiming," in Proc. of the Third
Caltech Conf. on VLSI, pp. 87{116, 1983.

[7] R. D. Poltmann, \Conversion of the delayed LMS al-
gorithm into the LMS algorithm," IEEE Signal Proc.
Letters, vol. 2, Dec. 1995.

[8] Y. Nakamura, K. Oguri, A. Nagoya, M. Yukishita, and
R. Nomura, \High-level synthesis design at NTT sys-
tems labs," IEICE Trans. Inf. & Syst., vol. E76-D,
pp. 1047{1054, Sept. 1993.

