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ABSTRACT

As one of the key steps in the feature extraction of tar-
gets consisting of both trihedral and dihedral corner re
ec-
tors via synthetic aperture radar, this paper studies the
problem of estimating the parameters of a single dihedral
corner re
ector. The data model of the problem and the
Cram�er-Rao bounds (CRBs) for the parameter estimates
of the data model are presented. Two algorithms, the
FFTB (fast Fourier transform based) algorithm and the
NLS (non-linear least squares) algorithm, are devised to
estimate the model parameters. Numerical examples show
that the parameter estimates obtained with both algorithms
approach the CRBs as the signal-to-noise ratio increases.
The parameter estimates obtained with the NLS algorithm
start to achieve the CRB at a lower SNR than those with
the FFTB algorithm, while the latter algorithm is compu-
tationally more e�cient.

1. INTRODUCTION

Target features are very important in many applications in-
cluding automatic target classi�cation with synthetic aper-
ture radar (SAR). A commonly used data model in tar-
get feature extraction via SAR is the sum of several two-
dimensional (2-D) sinusoids in noise. This model assumes
that each target consists of several point scatterers or tri-
hedral corner re
ectors. In practice, however, many targets
contain other scattering phenomena that do not behave like
point scatterers [1]. For most man-made targets, the re-
turned energy is primarily caused by trihedral as well as
dihedral corner re
ectors [2]. The features of a dihedral
corner are completely di�erent from those of a trihedral [3].
The former can be more important than the latter because
they contain information such as the orientation of a target
with respect to the radar.

A mixed data model can be used to describe both trihe-
dral and dihedral corner re
ectors. By using the relaxation-
based approaches [4], one of the key issues of estimating the
parameters of the mixed data model becomes estimating the
parameters of a single trihedral or dihedral. The problem of
estimating the parameters of trihedrals has been addressed
in [4]. Hence, we concentrate on the parameter estimation
of a single dihedral corner re
ector in this paper.

We �rst introduce a data model describing the dihe-
dral features. We then propose a computationally e�cient
FFTB (fast Fourier transform based) algorithm and a more

sophisticated non-linear least squares (NLS) algorithm to
extract the features of the data model. At low signal-to-
noise ratio (SNR), the parameter estimates obtained with
the FFTB algorithm are not as accurate as those with the
NLS algorithm, but the former is faster than the later. The
parameter estimates obtained with the FFTB algorithm can
also be used as initial conditions of the NLS algorithm and
can greatly speed up the convergence of the latter.

2. PROBLEM FORMULATION

It is well-known that the signal re
ected by an ideal point
scatterer of a radar target in a SAR system can be described
as the following 2-D complex sinusoid:

sp(m; �m) = �pe
j2�(mfp+ �m �fp); m = 0; 1; � � � ;M � 1;

�m = 0; 1; � � � ; �M � 1;
(1)

where the complex amplitude �p and the 2-D frequency pair
ffp; �fpg, respectively, are proportional to the RCS (radar
cross section) and the 2-D location (range and cross range)
of the scatterer, and M and �M denote the numbers of avail-
able data samples.
For a trihedral corner re
ector, the RCS can be approx-

imately considered as a constant because the angle varia-
tion of the radar beam in a SAR system is very small [3, 5].
Thus, the re
ected signal of a trihedral corner re
ector can
be approximately described as:

st(m; �m) = �te
j2�(mft+ �m �ft); (2)

where �t and fft; �ftg are proportional to the RCS and the
location of the trihedral corner, respectively.
For a dihedral corner re
ector, however, the RCS cannot

be approximately considered to be a constant. The maxi-
mal value of the RCS is achieved when the radar beam is
perpendicular to the dihedral corner. It falls o� approxi-

mately as a function of sinc(�)
4
= sin �=� when the angle

between the radar beam and the line that is perpendicular
to the dihedral corner increases [6]. The re
ected signal of
a dihedral corner re
ector can be described as

sd(m; �m) = �dsinc[�b(m� �)]ej2�(mfd+ �m �fd); (3)

where �d, ffd; �fdg, and b, respectively, are proportional to
the maximal RCS, the central location, and the length of
the dihedral corner, and � denotes the peak location of the
data sequence and is determined by the orientation of the



dihedral re
ector. Note that this signal is a one-dimensional
(1-D) rectangular pulse with width b and magnitude �d=b

in the frequency domain.
When a radar target consists of Kt trihedral and Kd di-

hedral corner re
ectors, the data model of a realistic SAR
system can be described as

y(m; �m) = ~st(m; �m) + ~sd(m; �m) + e(m; �m); (4)

where

~st(m; �m) =

KtX
k=1

�tke
j2�fmftk

+ �m �ftkg (5)

denotes the signal corresponding to the Kt trihedral cor-
ners,

~sd(m; �m) =

KdX
k=1

�dksinc[�bk(m��k)]e
j2�(mfdk

+ �m �fdk ); (6)

denotes the signal corresponding to theKd dihedral corners,
and e(m; �m) denotes the 2-D unknown noise. The unknown

parameters f�tk ; ftk ;
�ftkg

Kt
k=1 and f�dk ; bk; fdk ;

�fdk ; �kg
Kd
k=1

are our features of interest and are to be estimated from
fy(m; �m)g.
The NLS estimation of the unknown parameters

f�tk ; ftk ;
�ftkg

Kt
k=1 and f�dk ; bk ; fdk ;

�fdk; �kg
Kd
k=1 requires a

multiple dimensional search over the parameter space. It
has been shown in [4] that the relaxation-based procedure
can e�ciently solve this kind of problems. One of the key
steps in the relaxation-based procedure is to estimate the
parameters of a single trihedral and dihedral re
ector. since
the problem of estimating the parameters of a single trihe-
dral re
ector has been addressed in [4], we only consider
the problem of extracting the features of a single dihedral
corner in this paper. The data model of the problem is then
described as

yd(m; �m) = sd(m; �m) + ed(m; �m); m = 0; 1; � � � ;M � 1;
�m = 0; 1; � � � ; �M � 1;

(7)
where sd(m; �m) is de�ned by (3) and fed(m; �m)g denotes
the unknown 2-D noise sequence.

3. THE NLS ALGORITHM

Let

g(m; �m) = sinc[�b(m� �)]ej2�(mfd+ �m �fd);

m = 0; 1; � � � ;M � 1; �m = 0; 1; � � � ; �M � 1;
(8)

and let Yd and G denote M � �M matrices whose m �mth
element are yd(m; �m) and g(m; �m), respectively. Then the
NLS estimates of f�d; b; fd; �fd; �g are determined by the
following cost function

C1

�
�d; b; fd; �fd; �

�
= kYd �G�dk

2

F ; (9)

where k � kF denotes the Frobenius norm [7]. Minimizing
C1 in (9) with respect to �d gives

�̂d =
vecH(G)vec(Yd)

vecH(G)vec(G)
; (10)

where (�)H denotes the complex conjugate transpose and
vec[X] denotes the vector [ xT1 x

T
2 � � � x

T
K ]T with

fxkg
K
k=1 being the columns of X. Since

vecH(G)vec(G) =
PM�1

m=0

P �M�1

�m=0
sinc2[�b(m� �)]

= �M
P

M�1

m=0
sinc2[�b(m� �)] = �M kgk2 ;

(11)

where

g =
�
g(0) g(1) � � � g(M � 1)

�T
; (12)

with
g(m) = sinc [�b(m� �)] ej2�mfd ; (13)

and (�)T denoting the transpose and

vecH(G)vec(Yd) = g
H
Yda

�
�M ( �fd); (14)

with (�)� denoting the complex conjugate and

a �M ( �fd) =
�
1 ej2�

�fd � � � ej2�(
�M�1) �fd

�T
; (15)

we can rewrite (10) as

�̂d =
gHYda

�
�M
( �fd)

�M kgk2
: (16)

By inserting (10) into (9), (9) can be simpli�ed to

C2

�
b; fd; �fd; �

�
= vecH (Yd) vec (Yd)

�
vecH(Yd)vec(G)vecH(G)vec(Yd)

vecH(G)vec(G)
;

(17)
which is minimized by maximizing

C3

�
b; fd; �fd; �

�
=

vecH(Yd)vec(G)vecH(G)vec(Yd)
vecH(G)vec(G)

=
jgHYda

�

�M
( �fd)j

2

�Mkgk2 :

(18)
The maximization of C3 in (18) requires a four-dimensional
search over the parameter space. There are several algo-
rithms that can be used to solve this problem. In this
paper, we use an alternating maximization procedure by
alternatively updating b, � , and ffd; �fdg while �xing the re-
maining parameter estimates to maximize C3. Note that for
some given b and � , kgk is a constant. Thus, the estimate
of the frequency pair

�
fd; �fd

	
is determined by maximizing��gHYda

�
�M
( �fd)

��, which can be e�ciently calculated by using
the 2-D FFT.

4. THE FFTB ALGORITHM

The FFTB algorithm is devised since it is compu-
tationally more e�cient than NLS and can be used
to provide initial conditions to the NLS algorithm.
Note that the signal fsd(m; �m)g is a rectangular
pulse in the frequency domain located at the fre-
quency interval from

�
fd � b

2
; �fd

	
to

�
fd +

b

2
; �fd

	
. Let

fYd(f; �f)g denote the 2-D FFT of the data sequence�
yd(m; �m);m = 0; 1; � � � ;M � 1; �m = 0; 1; � � � ; �M � 1

	
. For

su�ciently high SNR, jYd(f; �f)j can be used to provide good
estimates of b and ffd; �fdg. (Note that padding with zeros
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Figure 1. Comparison of NLS and FFTB when M =
�M = 32 and SNR=�14 dB: (a) jsd(m; �m)j, (b) jyd(m; �m)j,
(c) jŝd(m; �m)j estimated by FFTB, and (d) jŝd(m; �m)j esti-
mated by NLS.

before performing the FFT is necessary to determine the
estimates of b and ffd; �fdg with high accuracy.) We deter-
mine their estimates with the following steps.

Step 1: Calculate the 2-D FFT
�
Yd(f; �f)

	
of the data

matrix Yd and search the complex height �Yd and the loca-

tion f �fd; ��fdg of the dominant peak of
�
jYd(f; �f)j

	
.

Step 2: Let f �fdl; ��fdg and f �fdr; ��fdg be the frequency

pairs nearest f �fd; ��fdg, where �fdl and �fdr are smaller and

larger than �fd, respectively, such that

���Yd( �fdl; ��fd)
��� < j �Yd j

2

and

���Yd( �fdr; ��fd)
��� < j �Yd j

2
.

Step 3: Determine the estimates b̂, f̂d, and �̂fd, respec-
tively, with

b̂ = �fdr � �fdl; (19)

f̂d =
�fdl + �fdr

2
; (20)

and
�̂fd =

��fd: (21)

The estimate �̂ of � could be obtained by searching the
dominant peak of the data sequence fjyd(m; �m)jg. To de-
termine �̂ with high accuracy, time domain interpolation of
the data sequence fjyd(m; �m)jg would be needed. Yet our
FFTB algorithm determines �̂ with a 1-D search method
such as the golden section approach [8] by maximizing C3

in (18) with b, fd, and �fd in (18) replaced by their FFTB es-
timates. �̂ obtained with this 1-D search method is usually
more accurate than that obtained with the time domain
interpolation since the accuracy of the latter approach is
limited by the sampling interval and hence does not achieve

the CRB even at high SNR. After b̂, f̂d, �̂fd, and �̂ are de-
termined, �̂d is calculated with (16).
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Figure 2. Comparison of NLS and FFTB when M =
�M = 32 and SNR= �14 dB: (a) normalized modulus of
the true pulse, (b) normalized modulus of the 2-D FFT of
fyd(m; �m)g, (c) normalized modulus of the pulse estimated
by FFTB, and (d) normalized modulus of the pulse esti-
mated by NLS.

5. CRB OF THE 2-D DATA MODEL

To quantitatively compare the performances of the NLS
and the FFTB algorithms, we derive the CRB for the data
model (7). Let Q = Efvec(Ed)vec

H(Ed)g be the 2-D noise
covariance matrix, where Ed is an M � �M matrix whose
m �mth element is ed(m; �m). The extended Slepian-Bangs'
formula for the ijth element of the Fisher information ma-
trix has the form [9]:

fFgij = tr

�
Q
�1
Q

0

iQ
�1
Q

0

j

�
+2Re

n
(��dg

H)
0

iQ
�1(g�d)

0

j

o
;

(22)

where X
0

i denotes the derivative of X with respect to the
ith unknown parameter, tr(X) denotes the trace of X, and
Re(X) denotes the real part of X. Note that F is block
diagonal since Q does not depend on the parameters in
(g�d), and (g�d) does not depend on the elements of Q.
Hence the CRB of the dihedral parameters can be obtained
from the inverse of the second term in the right side of (22).
Let

q =
�
Re(�d) Im(�d) b fd �fd �

�T
: (23)

Then

CRB(q) =
�
2Re(P

H
Q
�1
P)
��1

; (24)

where

P =
h
vec(G) jvec(G)

�
@vec(G)

@b

�
�d�

@vec(G)

@fd

�
�d

�
@vec(G)

@ �fd

�
�d

�
@vec(G)

@�

�
�d

i
:

(25)
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Figure 3. Comparison of the CRBs and the RMSEs of (a)

�̂d, (b) B̂, (c) f̂d, (d) �̂fd, and (e) �̂ obtained by FFTB and
NLS.

6. NUMERICAL EXAMPLES

We now present a numerical example comparing the per-
formances of the NLS and FFTB algorithms with the cor-
responding CRBs. In this example, we choose �d = 0:4�,
b = 0:2 Hz, fd = 0:1 Hz, �fd = 0:1 Hz, � = 18:6, and
M = �M = 32. The noise sequence fed(m; �m)g is assumed
to be a zero-mean circularly symmetric white Gaussian ran-
dom process with variance �2n. The SNR is de�ned as

SNR = 10 log10

�
�2s
�2n

�
dB; (26)

where

�2s =
1

M �M

M�1X
m=0

�M�1X
�m=0

jsd(m; �m)j2: (27)

Figures 1(a), (b), (c), and (d), respectively, show the modu-
lus of fsd(m; �m)g, the modulus of fyd(m; �m)g, the modulus
of fŝd(m; �m)g estimated by FFTB and by NLS. Figures
2(a), (b), (c), and (d), respectively, show the normalized

modulus (modulus divided by M �M) of the pulse, the nor-
malized modulus of the 2-D FFT of fyd(m; �m)g, the nor-
malized modulus of estimated pulse obtained by FFTB and
by NLS, respectively, when SNR = �14 dB. We note that
the NLS estimates in Figures 1(d) and 2(d) are very close
to the true ones in Figures 1(a) and 2(a), respectively, while
the FFTB estimates in Figures 1(c) and 2(c) are very poor.
Figure 3 shows the comparison of the root mean-squared

errors (RMSEs) for the parameter estimates obtained by the
two algorithms with the corresponding CRBs as a function
of the SNR. The RMSEs are obtained from 100 indepen-
dent Monte-Carlo trials. We note that the parameter esti-
mates obtained with both algorithms approach the CRBs
as the SNR increases. The parameter estimates obtained
with NLS start to achieve the CRBs at an SNR that is be-
tween 5 dB and 8 dB lower than those obtained with FFTB.
For this example, the amount of computations required by
the former is only about 1.05 times as much as that by the
latter.

7. CONCLUSIONS

We have studied how to extract the features of a single di-
hedral corner re
ector with the FFTB algorithm and the
NLS algorithm. These two algorithms can be used with re-
laxation based approaches to extract the features of targets
with multiple dihedrals and trihedrals.
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