SOLVING THE SVD UPDATING PROBLEM FOR SUBSPACE TRACKING ON A
FIXED SIZED LINEAR ARRAY OF PROCESSORS

Chazrtalt Sengupta

Joseph R. Cavallaro

Behnaam Aazhang

Electrical and Computer Engineering Department, Rice University, Houston, TX 77005, USA.

ABSTRACT

This paper addresses the problem of tracking the covari-
ance matrix eigenstructure, based on SVD (Singular Value
Decomposition) updating, of a time-varying data matrix
formed from received vectors. This problem occurs fre-
quently in signal processing applications such as adaptive
beamforming, direction finding, spectral estimation, etc. As
this problem needs to be solved in real time, it is natural
to look for a parallel algorithm so that computation time
can be reduced by distributing the work among a number
of processing units. This paper proposes a parallel scheme
for SVD updating that can be implemented on a fixed sized
array of off-the-shelf processors, to get speedups close to the
number of processors used.

1. INTRODUCTION

Many signal processing algorithms are based on the compu-
tation of the eigenstructure (eigenvalues and eigenvectors)
of the covariance matrix of a data matrix. Applications
include: direction of arrival estimation in array processing,
spectral estimation [1] and CDMA synchronization [2]. The
advantages of using the eigenvector-based methods (also
called subspace based methods) are well-known.

In the usual way of using such algorithms, the covariance
matrix is first estimated from the received data. Then, by
using some numerical method, the Eigen Value Decomposi-
tion (EVD) is computed before applying a subspace based
algorithm, such as, MUSIC [3]. Before applying the sub-
space based algorithm, the EVD is used to separate the
signal subspace from the noise subspace. The covariance
matrix, Rn, is estimated as :

Ry =Y.V, (1)

where Y,, is the data matrix at time n and ' is the conjugate
transpose operation. The data matrix is constructed from
the received data vectors :

A" o
Y, = : = (5Y’;—1) : (2)
6?/7}—1 Yn
Yn
where y, is the data vector at time n and 0 < f < 1 is

a “forgetting factor”. In a non-stationary environment the
received data vectors are expected to vary with time. This

time varying nature of the data is taken into account by
using the forgetting factor, § - thus, previously received
data vectors are weighted less than the current data vector.

A practical approach to computing the EVD of the co-
variance matrix i1s to use the Singular Value Decomposition

(SVD) of the data matrix ¥;,. The SVD of Y, is defined as
Y, = UV, (3)

where, U and V' are unitary matrices and ¥ is a diagonal
matrix of singular values. From this it follows that

R, =YY, =VIU'USV' = VIV, (4)

which is the eigenvalue decomposition of the covariance ma-
trix. Hence, the eigenvalues and eigenvectors can be com-
puted directly from the SVD of the data matrix instead of
computing them from an intermediary covariance matrix.
For a given processor wordlength, this alternate formula-
tion would result in superior numerical performance.

In a non-stationary environment, where the received data
varies with time, the SVD of the data matrix needs to be
updated to incorporate the change. The updating of the
SVD is used to continuously track the time-varying signal
or noise subspace (subspace tracking). Thus, our problem
is to calculate the SVD of the data matrix Y;, at each time
step n, using the SVD of the data matrix Y,_1 calculated
at time step n — 1.

As the problem needs to be solved in real time, it is natu-
ral to look for a parallel algorithm so that computation time
can be reduced by distributing the work among a number
of processing units. This paper proposes a parallel scheme
for SVD updating that can be implemented on a fixed sized
array of off-the-shelf processors.

2. ALGORITHM DESCRIPTION

Our algorithm is based on Hestenes method [4] for comput-
ing the SVD. In the Hestenes method, starting with any
given matrix A, an orthogonal matrix V is built such that
AV has orthogonal columns. Thus, AV = UX, where U
has orthonormal columns and ¥ is non-negative and diago-
nal. The SVD of Ais A = UXV'. To construct V, we take
A® = A and iterate :

Al-D :A(i)Q(i), (5)

(where ¢ represents a sweep and Q(i) is orthogonal), until
some A has orthogonal columns. Q" is chosen to be a



product of m(m — 1)/2 Jacobi rotations :

m(m—1)/2

V=11 @ (6)

1

where m is the number of columns of matrix A. Every
possible pair (r,s), 1 < r < s < n, is associated with one
of the rotations le). All the transformations applied to A
in this process, are simultaneously applied to an identity
matrix to get the V' matrix.

Let us denote UL by the single matrix W. Thus given
matrix A, Hestenes method yields matrices W and V such
that

A=WV". (7)
U and ¥ can be obtained from W as follows - the singular
values are equal to the norms of the columns of matrix W
and, U can be obtained by normalizing the columns of W.
However, since most subspace-based applications require V'
only, this step is not necessary.

As new rows are appended to the matrix Y, its size as
well as that of W, increases with time. It may be noted, in
equation 2, less weightage is given to “older” data vectors as
compared to recently received data vectors by multiplying
with higher powers of 3. We take this a step further and
consider only the last I data vectors. This will keep the
size of Y, and W, fixed. The size of the parameters I and
S will depend on the application. So, we define Y, as:

6n_Ly;z—L+1
Y, = / . (8)
6?/7}—1
Yn

Let us assume that, at time step n—1, we have calculated
the SVD of Y,_1 using Hestenes method :

Yoo = Wn—lvnf—la (9)

where Wy,_1 = Up—125—-1. The computation in time step
n is based on the following equations :

Y, = (6Y’}‘1) . (10)
Yn
Using equation 9 with 10, yields,
_ 6Wn—1 ) '
Y, = (%Vn_l v (11)

Let us denote the first matrix on the right hand side of
equation 11 by X,. The columns of X,, are orthogonalized
using r sweeps of Hestenes method [4]. So we get the desired

update of the SVD as:

where V,, = Vo1 V.

Simulations of application of this method to the fre-
quency estimation problem (refer Section 4) show that a
“good” enough approximation is obtained after just one
sweep of Hestenes method, for each update. Here a sweep

is defined as the process of orthogonalizing each pair of
columns, once, in any order. If only one sweep is performed,
this algorithm requires O(m2) computation. In the next
section, we will first discuss a previously proposed alterna-
tive scheme for parallel SVD updating. In Section 4 we will
compare the performance of both schemes for a frequency
estimation problem and show that they perform similarly,
given the same value of §. Finally, in Section 5, we will dis-
cuss the parallelization scheme for our algorithm and the
advantages to be gained from it.

3. RELATED WORK

To date, the most powerful parallel scheme for SVD updat-
ing is the systolic array proposed by Moonen, Van Dooren
and Vandewalle [5]. This scheme is based on an SVD updat-
ing algorithm proposed in [6] and [7]. This SVD algorithm
is constructed by combining QR updating with a Jacobi
type SVD diagonalization procedure (Kogbetliantz’s algo-
rithm, modified for triangular matrices). As the Hestenes
method for SVD is a modified version of Jacobi’s method
for SVD, we can expect that both algorithms will perform
very similarly, when tracking a subspace. This statement is
substantiated by our simulation results.

The data dependence structure of Moonen et al’s two
dimensional systolic algorithm is such that at each update,
the computation using each column depends on the results
of the computation using all the columns to its left. Also,
computation using each row depends on the results of the
computation using all rows above it. Thus, the data cannot
be easily partitioned onto a fixed number of processors. A
fine grained parallelization scheme is required [5], which will
depend on pipelining of the problem on a large number of
custom-built processing units. The number of processing
units required is proportional to the size of the problem
(defined by m/2).

However, in our algorithm, at each update, the computa-
tion using each pair of columns is independent of the com-
putation using all other columns. Hence, it can be easily
partitioned onto a linear array of processors of size less than
(or equal to) the size of the problem, to get speedups close
to the number of processors used. This issue is discussed
further in Sections 5 and 6.

4. SIMULATION RESULTS

In order to show the tracking capabilities of our algorithm,
we will use the examples used by Ferzali and Proakis in
[7]. In this example, a covariance eigenstructure based al-
gorithm is used in a spectral estimation application, where
the problem is to track the variations in the instantaneous
frequencies of a signal s(n) composed of multiple, superim-
posed, time varying sinusoidal components. The received
signal r(n) is the sum of the k sinusoids contaminated with
an additive zero mean Gaussian white noise W(n).

k

r(n) =3 Agsin(wn) +W(n). (13)

=1

The data matrix Y, is constructed from r(n) The eigen-
vector based estimation algorithm used was MUSIC [3].



0.5 T

0.45

o
~

o
w
a

o
w

Frequency
o
N
o

—— Proposed algorithm(L=200)
—-- Moonen et al algorithm
Actual frequency

I
N}

e
[
15

o
o

o
=}
G

I I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500
Time steps

o

(a)

0.5

0.45F

o
IS
T

o

w

a
T

o
w
T

Frequency
o
N
o
T

—— Proposed algorithm(L=150)
I — - Moonen et al algorithm
Actual frequency

I
N}
T

e

[

13
T

o
o
T

o
=}
a
T
I

I I I I I
80 100 120 140 160 180 200
Time steps

o

o
IN)
=]
N
o
@
=]

(b)

Figure 1. Application of SVD updating to the frequency estimation problem. SNR = 10dB, m = 7 (a)
Tracking an abruptly changing subspace, § = 0.9 (b) Tracking a slowly changing subspace, # = 0.9935. In
both plots, the dotted line is the actual frequency. The solid line and the dashed line are the estimated
frequency using the proposed algorithm and Moonen et al’s algorithm respectively.

In the first experiment, we track an abruptly changing
subspace. A sudden jump in frequency is introduced. This
changes the subspace suddenly. The first 250 data vectors
were generated from

r1(n) = 2cos(27 x .35t) + W(n). (14)
Another 250 data vectors were formed from
ro(n) = 2cos(2m x .45t) + W(n). (15)

where the frequency of the only sinusoid has jumped from
.35 to .45 Hz. Data vectors of size m were constructed.
Figure 1.a shows that our proposed scheme and Moonen
et al’s method perform very similarly with only 1 sweep of
their respective SVD algorithms for the same values of f.

In the next example, we track a slowly but continuously
changing frequency. The data vectors were generated from
the received signal

rz(n) = 2cos(2m x .10n) 4 2cos(27 x (.25 + (inc X n))n)

+2cos(2m x .45n) + W(n). (16)

The gradual change in the second frequency is defined
by tnc and the value of inc used in our experiments was
0.1/200, that is, inc changes by 0.1 over 200 time steps.
Again, both schemes perform very similarly and success-
fully track all 3 frequencies (Figure 1.b).

5. PARALLELIZATION SCHEME

Our parallelization scheme for the SVD updating problem
is based on the solution of singular value problems on an

undersized linear array proposed by Schreiber [8], using the
Hestenes method [4] for the SVD.

The linear array of P processors (with P < m/2) used
for our scheme is shown in Figure 2. Let us recall, from
Section 2, that at the beginning of each time step, n, we
have the matrices W,_1 and V,,—; from the SVD update of
the previous step. The number of columns of each of these
matrices is equal to the size of the data vectors, m. Figure
2 shows the initial distribution, (at the beginning of each
time step) of the columns of both the matrices on the P pro-
cessors. The data memory of each processor is conceptually
divided into 2 parts - LEFT and RIGHT memory. Initially,
processor i holds columns (i —1) x E4+ltoixHof Wy
and V,_1 in its data memory. The columns are distributed
equally between its LEFT and RIGHT memory as shown
in Figure 2. This implies LEFT and RIGHT memory holds
m/2P columns each.

At each time step, the data vector y, is broadcast to all
the processors by a host processor. The broadcasting of
yn can be done elegantly by pipelining the broadcasting of
Yn4+1 with the computation of time step n, if y4+1 is already
available. Once, y, 1s available to all the processors, each
processor multiplies its columns of W,_; with 3 and the
columns of V,—1 by y;, (refer equation 11). Thus we form
the first matrix in the right hand side of equation 11, that
is, matrix X,. We then orthogonalize the columns of X,
as described below.

The array performs one sweep of Hestenes SVD algo-
rithm, according to equations 5-6. In each sweep, first, each
processor orthogonalizes all possible pairs of columns in its
LEFT and RIGHT memory. These pairs are formed by
taking both columns either from LEFT or RIGHT memory



Proc 1 Proc 2 Proc 3 Proc 4
LEFT RIGHT LEFT RIGHT LEFT RIGHT LEFT RIGHT
1,2 3,4 56 7,8 9,10 11,12 13,14 15, 16

Figure 2. The linear array of processors used for the SVD updating, P = 4, m = 16. The arrows indicate

connections between processors.

but not one from each. The rest of the sweep is performed
in (2P — 1) cycles.

In each cycle, each processor orthogonalizes all possible
pairs of columns formed by taking one column from its
LEFT memory and one from its RIGHT memory. Then, the
processors exchange the contents of their LEFT and RIGHT
memories along the arrows shown in Figure 2. The connec-
tions between the processors are such that in each sweep
(that is, in (2P — 1) cycles) all possible pairs of columns
of X,, are orthogonalized exactly once [8]. The transforma-
tions applied to X, are also applied to V,,_1 to get V.

Let the time required to apply one single rotation (le) in
equation 6) be t,. Also let t. be the time required to trans-
fer m/P columns from one processor to another. Then we
can calculate the speedup as :

Sequential execution time
Parallel ezecution time

_ (m(m - 1)/2)tr _
= tmtm—1)2P) + 2P - o) 1D

Speedup =

Thus this parallelization scheme makes the SVD update
O(m?/ P), (if P = m, it is O(m)). That is, the speedup ob-
tained scales with the number of processors. However, the
difference between the speedup obtained and the number of
processors P, depends on the second term in the denomina-
tor of equation 17, that is the communication time between
Processors.

6. ADVANTAGES OF USING THE
PROPOSED ALGORITHM AND ITS
PARALLELIZATION SCHEME

e The proposed algorithm and parallelization scheme can
be implemented on a fixed sized array of off-the-shelf DSPs
(Digital Signal Processors) thus avoiding the high design
time and cost as well as inflexibility due to custom pro-
cessors. Our scheme uses coarse grained parallelism, that
is, communication between processors is interleaved with
computation involving % columns of matrix W, instead
of only a few elements. Thus the array does not spend a
large amount of time loading and unloading data. Hence,
it is very suitable for implementation on an array of typ-
ical DSPs like the Texas Instruments TMS320C40, which
has single-cycle functional units, but, several cycles are re-
quired to transfer data across the communication ports.

o A software solution on off-the-shelf DSPs would be more
flexible with regards to changing parameters like 3, m
and the size of the signal subspace according to the time-
variance of the data vectors. Also, the subspace-based algo-

rithm which uses the results of the SVD can be implemented
on the same DSPs. This would reduce the physical size of
the hardware and would be of great advantage in applica-
tions like subspace-based CDMA synchronization [9], where
this hardware would be a part of a base station.

e The parallelization scheme can be implemented on a scal-
able number of processors. Even if P is much less than the
problem size, (that is m/2), this scheme will yield speedups
close to P and processor utilization close to 100%. Hence,
with a processor array of given fixed size, we can update
the SVD of arbitrarily large matrices.

7. ACKNOWLEDGEMENTS

This work was supported in part by Nokia Corporation,
by the Texas Advanced Technology Program under grant
#003604-049, and by NSF under grant NCR 9506681.

REFERENCES
[1] A. van der Veen, E. F. Deprettere, and A. L. Swindle-

hurst. Subspace-based signal analysis using Singular
Value Decomposition. [EFEE Proceedings, 81(9):1277—
1308, September 1993.

[2] S. E. Bensley and B. Aazhang. Subspace-based channel
estimation for code division multiple access communica-
tion systems. IEEE Trans. Commun, 44(8):1009-1020,
August 1996.

[3] R. O. Schmidt. Multiple emitter location and signal
parameter estimation. [IEFE Trans. on Antennas and
Propagation, AP-34(3):276-279, March 1986.

[4] M. R. Hestenes. Inversion of matrices by biorthogonal-
ization and related results. J. STAM, 6:51-90, 1958.

[5] M. Moonen, P. Van Dooren, and J. Vandewalle. A sys-
tolic array for SVD updating. SIAM J. Matriz Anal.
Appl., 14:353-371, 1993.

[6] M. Moonen, P. Van Dooren, and J. Vandewalle. An
SVD updating algorithm for subspace tracking. SIAM
J. Matriz Anal. Appl., 13:1015-1038, 1992.

[7] W. Ferzali and J. G. Proakis. Adaptive SVD algorithm
with application to narrowband signal tracking. SVD
and Signal Processing, 11:149-159, 1991.

[8] R. Schreiber. Solving eigenvalue and singular value
problems on an undersized systolic array. SIAM Journal
Sci. Stat. Comput., 7(2):441-451, April 1986.

[9] C. Sengupta, K. Kota, and J. R. Cavallaro. Parallel
algorithms and architectures for subspace based channel
estimation for CDMA communication systems. SPIE,
Advanced Signal Processing Algorithms, Architectures,
and Implementations VI, 2846:412-423, 1996.



