
y

y

y

I

II

�

� � �

� � �

� �

�

� �

� � �

� � � � �

� �

ABSTRACT

1. INTRODUCTION

2 1 2 1

3 1 2 3 1 2

4 1 2 3 4 1 2 3

2 1 2 2 3

2 2 2 3 1

2 3 2 1 2

2 1 1

3 1 2 1 2

4 1 2 3 1 2 3

A VECTOR ARCHITECTURE FOR HIGHER-ORDER MOMENTS

ESTIMATION

Jos�e C. Alves, Andr�e Puga, Lu��s Corte-Real and Jos�e S. Matos

C � m �

C � ; � m � ; �

C � ; � ; � m � ; � ; �

m � m � �

m � m � �

m � m � �

m � E x k x k �

m � ; � E x k x k � x k �

m � ; � ; � E x k x k � x k � x k �

y k x k : x k : x k

y k x k : x k : x k

This work is supported by Junta Nacional de In-

vestiga�c~ao Cient���ca e Tecnol�ogica (JNICT), contract no.

PBIC/TIT/2489/95 | HAREOS

() = () (1)

() = () (2)

() = ()

() ()

() ()

() () (3)

() = [() (+)] (4)

() = [() (+) (+)] (5)

() = [() (+) (+) (+)] (6)

() = () 0 85 (1) + 0 175 (2) (7)

() = () + 0 85 (+ 1) + 0 175 (+ 2) (8)

FEUP - Faculdade de Engenharia da Universidade do Porto

INESC - Instituto de Engenharia de Sistemas e Computadores

Pra�ca da Rep�ublica, 93 - 4007 Porto CODEX - PORTUGAL

Higher-order statistics extend the analysis methods of

non-linear systems and non-gaussian signals based on

the autocorrelation and power spectrum. The main

drawback of their use in real time applications is the

high complexity of their estimation due to the large

number of arithmetic operations. This paper presents

an experimental vector architecture for the estimation

of the higher-order moments. The processor's core is

a pipelined multiply-accumulate unit that receives four

data vectors and computes in parallel the moment taps

up to the fourth-order. The design of custom cache

memory organization and address generation circuits

has led to more than 11 operations per clock cycle.

The architecture was modeled and simulated in Verilog

and is presently being implemented in XILINX �eld-

programmable gate arrays (FPGAs) and one custom

integrated circuit for the multiply-accumulate unit.

Higher-order statistics (HOS) have been applied to a

large set of engineering problems, for instance pat-

tern recognition [1] and real-time image processing [2].

These statistics, namely the higher-order cumulants,

are particularly useful when it is necessary to deal with

non-linearities or non-gaussianities [3].

The 2nd, 3rd and 4th-order cumulants of a real one-

dimensional, zero mean data process are de�ned as:

where

are the 2nd, 3rd and 4th moments. The estimation

of the higher-order moments is the most complex task

of the higher-order cumulants estimation algorithm [3],

due to the large number of arithmetic operations re-

quired.

Two classic examples that show the usefulness of

higher order cumulants are the following systems:

If a method of system identi�cation based on the

second-order cumulant is used, the systems cannot be

distinguished because these cumulants are identical.

However, system identi�cation methods based on the

3rd-order cumulant can be successfully applied to iden-

tify both systems because the cumulants have di�erent

values for the two systems [3].

Some work has been done on the development of ded-

icated hardware architectures [4] and software imple-

mentation on parallel machines [5] for the real time

estimation of higher-order moments. However, these

implementations require large computation arrays and

expensive parallel machines.

This paper presents ProHos, an experimental vec-

tor architecture for the estimation of the higher-order

moments, suitable to be included in a low cost PC

expansion board. The processor's core is a pipelined

multiply-accumulate unit that receives four data vec-

tors and computes in parallel the moment taps up to

the fourth-order. The design of custom cache memory

organization and address generation circuits has led to

an average performance exceeding 11 operations per

99.4

99.5

99.6

99.7

99.8

99.9

1 0 0

8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6

C4

C2

C3

Data word width (bi ts)

P
re

ci
si

o
n

 (
%

)

sh
a

re
d

 m
e

m
o

ry

P
C

/I
S

A
 b

u
s

address
generator

control
unit

M1

M2

M3

M0

* +

* +

* +

data cache MAC unit

host
interface

C
o

n
tr

o
l

domain
generator

d
a

ta
 d

e
m

u
x

 c
a

ch
e

 a
d

d
re

ss
 m

u
x

bank 0

bank 1

 !
q

q

�
k � k

k k

4 1 2 3 3 1 2 2 1

1 2

Precision
C C

C

C

C

:

m � ; � ; � m � ; � m �

� �

2. QUANTIZATION ERROR

3. PROHOS ARCHITECTURE

3.1. Multiply-accumulate unit|MAC

clock cycle. A �rst version of the architecture has been

simulated using a model written in Verilog hardware

description language [6], that helped us to tune the con-

trol section of the processor [7]. The present prototype

is being built using XILINX FPGAs [8] for the control

part and one custom designed integrated circuit that

implements the pipelined multiply-accumulate unit.

The hardware complexity of the processor depends

mainly on the multiply-accumulate unit, namely on

the width of the input data applied to the multipli-

ers. However, a reduction of the number of bits used

to represent the input data implies an increase of the

quantization error. To evaluate the in
uence of this

error on the numerical precision of the estimated cu-

mulants, a set of simulations have been done using the

systems described by equations (7) and (8).

Exponential distributed white noise with mean equal

to 1 has been applied to each system and the second,

third and fourth-order cumulants of the output signal

have been estimated. The estimates have been com-

pared with the cumulants obtained without quantiza-

tion error, using the following precision measure:

= 100 1
^ ^

^
%

where ^ is the estimate of the cumulant with quan-

tization error, ^ is the estimate without quantization

error, and the norm is the Forbenious norm.

Figure 1 presents the worst case of 10 independent

runs for both systems of 1000 data samples each, ob-

tained by quantizing the input data into words ranging

from 8 to 16 bits. It can be veri�ed that, to achieve

99 9% precision it will be necessary to use at least 12

bit words to represent the input data, and for these

two systems the e�ects of quantization error on the �-

nal results are irrelevant when more than 16 bits are

used.

To compute the estimates of higher-order moments, a

dedicated architecture was developed|ProHos (�g. 2).

The processor implements the hardest task of the mo-

ment estimation algorithm, computing the moment

taps for the several segments the data vector is divided

into. The present architecture assumes that the in-

put is a normalized one-dimensional data vector (zero

mean, unit standard deviation), although a normaliza-

tion procedure will be included in a future version. The

computation core is a pipelined multiply-accumulate

unit that processes four data vectors and computes in

Figure 1: Variation of the precision of the cumulant

estimation with the data word width

Figure 2: ProHos architecture

parallel the taps of the 2nd, 3rd and 4th-order mo-

ments. The input data vector is read from a RAM

memory shared with the host processor, that is also

used to pass some additional parameters. To over-

come the limited bandwidth of this memory, four static

RAMs are used as data cache to store one data segment

at a time and supply their elements to the multiply-

accumulate unit at the required order to compute each

moment tap. The sequence of data samples delivered

to the multiply-accumulate unit is generated by custom

control circuits built around binary counters, that com-

pute e�ciently the addresses of the data cache memo-

ries, with little intervention of the main controller. The

following sections present in detail the main blocks of

ProHos.

The processor's computation core is the multiply-

accumulate unit that computes the moment taps

(�g. 3). The unit has three cascaded multipliers, with

one accumulator at the end of each one.

To compute (), () and (),

four copies of the input data segment are sent to the

inputs of the MAC unit, starting at samples 0, ,

ΣX[i].X[i+τ1]

ΣX[i].X[i+τ1].X[i+τ2]

ΣX[i].X[i+τ1].X[i+τ2].X[i+τ3]

X[i]

X[i+τ1]

X[i+τ2]

X[i+τ3]

+

+

+
Rt

R
RR

R

R
R

R

R

R

R

16x8
bits

*

8x8
bits

*

24x8
bits

* Rf

Rt

Rt

Rf

Rf
bank 0

bank 1

M0

M1

M2

M3

Data cache

M
A

C
 u

n
it

address
generator

shared RAM

address
mult iplexer

data
demultiplexer

shared RAM address

data read from shared memory

cache read address

data read from cache

cache write address

L-1

τ1

-

τ2 i+τ2

i+τ3

i
i+τ1

counter

τ3 counter

=

counter

terminate_addr

counter

L
-1

-τ
1

ZERO

clock

load

next address

(b)

=

τ1

τ3

τ2

counter

enable

counter

load zero

enable

counter

load zero

=

=

P

enable
clock

next tau

terminate_tau

(a)

3�

�

3.2. Data cache memories

3.3. Cache address generation

Figure 3: Multiply-accumulate unit

and . As the unit computes the coe�cients of the

4th-order moment, the 3rd and 2nd order moments are

obtained as a side e�ect of this calculation. This way,

the utilization of the multipliers in this unit is not opti-

mized, because the lower-order moments are computed

several times during the computation of the fourth-

order moment. Besides the clock and reset lines, the

whole unit is controlled by a single line, that enables

the load of the output register of each accumulator and

clears its temporary register. This line is asserted in

the same cycle the last set of four data samples is sent

to the unit, and three delay modules (not represented

in �g. 3) introduce delays equal to the number of pipe

stages of each input-output path. The present unit has

5 pipe stages and 3 combinational parallel multipliers

that have been obtained by the ES2 module genera-

tor. To increase the clock frequency, pipelined multi-

pliers can be used, what increases the pipe stages of

the MAC unit. However, this has little impact in the

overall performance, because once the unit is �lled-up,

it has to be emptied only at the end of the computation

of the whole data vector, and the number of clock cy-

cles needed for this is only a small fraction of the total

execution time.

If a single data memory was used, it should be read

four times within each clock cycle, to send to the MAC

unit the four data samples needed per clock cycle. This

would impose a long clock cycle for the operation of the

MAC unit, requiring a large and fast static RAM to

store the whole data vector. In addition to this, it will

be desirable to include a pre-normalization of each data

segment that would be impractical if a single memory

was used. By the moment, this task is left to the host

processor.

To overcome this, a set of 4 static RAMs operate as

data bu�ers, that accommodate one data segmentat a

time. These memories are organized in two banks, each

one holding two copies of one data segment. While the

two memories of one bank are read twice in each clock

cycle to send four data samples to the MAC unit, the

Figure 4: Operation of the data cache memories

other two memories are loaded with the next segment

to be processed (�g. 4). To access each cache memory

twice and place the four data samples at the inputs of

the multipliers, address multiplexers and data demul-

tiplexers are used to load the four registers that drive

the inputs of the multiply-accumulate unit.

When the computation of the current segment ends,

the function of the cache banks is switched and the

next segment is loaded. Because each segment is kept

in the cache memories during the computation of all its

moment taps, the operation of loading a new segment

is not time critical and will accommodate in the future

the normalization procedure.

The address generation unit produces the addresses

needed to read and write the cache memories and to

read the data samples from the shared memory.

The shared memory is always accessed in sequence

and its address is the output of a binary counter ini-

tialized with zero. The sequence of addresses to write

the data samples into the cache memories is the output

of another binary counter, that is reset to zero before

a new segment is loaded.

Figure 5: Logic circuits for the -generator (a) and

cache read address generator (b)

The sequence of addresses needed to read the data

� �

� �

�

1 2 3

1 2 3

4 1 2 3

1 2 3

1 2 3

1

2 3

1 2 3 1

3 2 1

2

4. RESULTS AND CONCLUSIONS

REFERENCES
� ; � ; �

�

� ; � ; �

m � ; � ; �

x i

� � �

� ; � ; �

�

� �

L max � ; � ; � L �

� � � L

: �

mm

IEEE Transactions on Pattern Analysis

and Machine Intelligence

IEEE Transactions on Image Processing

IEEE Signal Processing

Magazine

Signal Process-

ing

Proceedings of the Interna-

tional Conference on Acoustics Speech and Signal

Processing

The verilog Hardware De-

scription Language

Pro-

ceedings of the XI Design of Integrated Circuits and

Systems|DCIS'96,

XILINX|The Programmable Logic Data

Book,1995

cache memories in the right order for the MAC unit

is generated automatically by a dedicated circuit built

with binary counters and comparators. This unit is

divided in two separate sections: the generator of the

domain of the moment functions (), and the

generator of the read addresses for the data cache mem-

ories.

The -generator produces the sequence of the

() that represents the non-redundant moment

taps being computed [7]. Although this operation is not

time critical, this is accomplished in the present version

by the circuit shown in �g. 5-(a), with the advantage

of requiring a single control line for its operation.

To compute (), four copies of the data

samples () must be sent to the MAC unit, starting

at addresses 0, , and . Because the samples

are accessed in sequence, these addresses can be pro-

duced by four counters. For each new point (),

these counters are loaded with the initial values 0, ,

and (�gure 5-(b)). The number of iterations is

() what simpli�es to because

, where is the size of data segment being

computed.

The architecture presented here was validated with a

mixed behavioral/structural Verilog model. Presently

a prototype is being built with XILINX FPGAs and

one custom integrated circuit, that will operate as a co-

processor of a PC, connected to the ISA bus. The con-

trol section (address generators, �nite state machines,

address/data multiplexers and four small static RAMs

with 64 bytes included just for test purposes) has been

implemented in one XILINX FPGA. It occupies ap-

proximately 70% of the programmable resources of a

XC4010-4, (10K gates-equivalent, -4 speed grade) and

can be clocked at 16MHz.

The multiply-accumulate unit was designed as a cus-

tom integrated circuit using the Cadence DFII system

and the ECPD07 (0 7) technology from ES2. The

multipliers were obtained automatically by the ES2

module generator. The unit receives four 8-bit inputs

and produces three results with 26, 34 and 42 bits, re-

spectively the 2nd, 3rd and 4th-order moments. This

guarantees no over
ow for data segments smaller than

1024 samples. First results of active chip area stay

below 7 , and the circuit can run with a 25MHz

maximum clock frequency.

With a 16MHz system clock, limited by the FPGA

implementation of the control part, the processor can

compute the moment estimates up to the fourth order

of a 4000 data samples segment in 55ms. In this exam-

ple, 285 di�erent coe�cients were computed, perform-

ing more than 8.6 millions of operations. A sequential

implementation, coded in C and optimized for speed

runs in 660ms in a PC/Pentium120MHz, what repre-

sents 12 the execution time of ProHos.

[1] Michail K. Tsatsanis and Georgios B. Giannakis.

Object and texture classi�cation using higher-order

statistics.

, 14(7):733{750, jul 1992.

[2] John M. M. Anderson and Georgios B. Giannakis.

Image motion estimation algorithm using cumu-

lants. ,

4(3):346{357, mar 1995.

[3] C. L. Nikias and J. M. Mendel. Signal processing

with higher-order spectra.

, 10:10{37, 1993.

[4] Haris M. Stellakis and Elias S. Manolakos. An

array of processors for the real-time estimation of

fourth- and lower-order moments.

, (36):341{354, 1994.

[5] John N. Kalamatianos and Elias S. Manolakos. Par-

allel computation of higher-order moments on the

maspar-1 machine. In

, may 1995.

[6] D. Tomas and P. Moorby.

. Kluwer Academic Publishers,

1991.

[7] J. C. Alves, A. Puga, L. Corte-Real, and J. S.

Matos. An e�cient co-processor for the estima-

tion of higher-order moments|prohos-1. In

, pages 457{462, Nov 1996.

[8]

.

