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ABSTRACT

In this paper the use of digital stochastic computing is pro-
posed to realize a recurrent network for blind separation
of undelayed linearly superposed signals into their original
components. The stochastic representation of signals al-
lows to design very simple digital processing elements to
implement all the operations necessary for the algorithm of
Herault and Jutten. A �rst hardware implementation has
been designed and the experimental results are presented.

1. INTRODUCTION

1.1. Blind Separation of Sources

Blind separation of sources is a basic and important prob-
lem in signal processing. Various methods have been in-
troduced to solve problems such as the "cocktail-party"
one. For example, contrast functions [1], cumulants [2],
or higher-order moments generated by nonlinear functions
[3] are used. Likewise hardware implementations have been
proposed, but still problems arise when integrating a solu-
tion, expanding the design, or concerning distorted signals
[4, 5].

For a hardware implementation it was decided to use
a separation method based on the learning algorithm of
Herault and Jutten [6, 7]. To simplify it's explanation let
us assume an array of only two sensors measuring instanta-
neous linear superpositions1 yi of two unknown independent
sources xi, i = 1; 2:
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The object is to extract two output signals si from the
sensor signals yi in a way that each output signal is propor-
tional only to one source signal. The problem is to �nd a
learning algorithm without a priori knowledge of the mix-
ing matrix A. The output signals are in general described
by the following equation

~s =W~y ()
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1For clearity reasons the time dependence of all signals will
be left out.

where W is the weight matrix and w12 and w21 are two
synaptic weights. Two di�erent theoretical solutions of the
synaptic weights are possible:

1. w12 = a12=a22 and w21 = a21=a11

2. w12 = a11=a21 and w21 = a22=a12

To realize an appropriate learning algorithm, Herault and
Jutten proposed a learning rule of the form

dw12

dt
= ��(s1) (s2) and

dw21

dt
= ��(s2) (s1);

where � > 0 is an arbitrarily adaptable gain factor. � and  
are odd nonlinear functions which contain odd power terms
only. Presented examples are

�(x) = x
3

and  (x) = tanh(x):

An overview of the structure of the separation net is shown
in Figure 1.

Figure 1: Structure of the separation net in the case of two
signals



Figure 2: Scheme of the automaton generating the nonlin-
ear function �

1.2. Bit-Stream Techniques

The goal is to use digital stochastic computing to imple-
ment the algorithm described. In consequence, the informa-
tion carriers between the processing elements are not digital
numbers but probabilities in binary representation. Such
components are known as stochastic processing elements.
It has been shown that the exponential dependency of ac-
curacy and time needed can be kept under control [8, 9]. In
contrast to common bit-stream techniques the arrangement
used is characterized, especially, by a signed zero-symmetric
coding leading to a very simple multiplication and to sim-
ple automata for the learning functions. These stochastic
processing elements allow to implement the inherent paral-
lelism of the algorithm using digital VLSI technology.

2. BASIC ELEMENTS

To combine the bit-stream technique with blind source sep-
aration it must be shown how to construct each processing
element presented in Figure 1. Circuits are required which
are able to integrate, to multiply, to add, to invert and to
form the nonlinear transmission functions.

2.1. Coding

It is possible to transform signed values in a limited range
into a probability using a suitable coder [8, 9]. In each
clock-cycle the coder compares the signed input value with
a random value of the same bit length and generates the
next bit of the bit-stream. Thus, the expected value of
the probability to �nd a binary "1" in the bit-stream cor-
responds to the signed input value. The more clock-cycles
are used, the higher is the accuracy of the bit-stream rep-
resentation. The silicon implementation of the coder uses
a pseudorandom generator consisting of a feedback 28 bit-
shift-register with 52 four-stages-parities.

2.2. Arithmetic Operations

As the most frequent and conventionally limiting operation
during signal processing the multiplication of two probabil-
ities in the bit-stream representation can simply be imple-
mented by combining both streams in a digital equivalence
[9].

In contrast to the multiplication it cannot be guaranteed
that during an addition the limited range of probabilities
will not be left. A solution is to replace the addition with

Figure 3: Plot of nonlinear function �

the calculation of the arithmetic mean. In hardware this
operation can be implemented with a multiplexer which is
randomly toggled between the two inputs.

The negation may easily be implemented with an in-
verter.

2.3. Learning Functions

The algorithm of Herault and Jutten requires two learning
functions which have to contain odd power terms only. The
way proposed to set up these functions is to react on se-
quences of identical bits in the bit-stream, that means to
make use of higher order statistical characteristics in the
bit-stream. An automaton counts identical bits consecu-
tively and switches the output accordingly.

The �rst automaton generates a function which has a
curve similar to the cubic function � (Figure 2). To calcu-
late the transmission function of the automaton, it is useful
to have a look at the case of stationary input and unlimited
observation time. Then the automaton can be described
like a Markovian process as follows2

~P =M(X;n) � ~P with
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The state equation can be evaluated as a transmission func-
tion of probabilities
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This function can be transformed into a function of signed
coded input values
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As mentioned the transmission function contains odd power
terms only. The curve for di�erent lengths of bit-sequences
is shown in Figure 3.

2 ~P vector of automaton's status probabilities

pi component of vector ~P

M(X;n) matrix of transition probabilities
X input probability
Y output probability
x signed coded input value
y signed coded output value
n sequence length of indentical input bits



The function  has been realized by a second automaton
which generates a sigmoid-similar function. The design of
this automaton is described in detail in [8]. The implemen-
tation of both automaton schemes in digital hardware has
been carried out by using sequential networks (synchronous
�nite state machines).

2.4. Storing Elements

In order to get two signals separated two storing elements
are needed to accumulate the synaptic weights w12 and w21.
In addition, these two elements have to integrate the incom-
ing bit-streams. An integrative element of the stochastic
arithmetic is the simplest arrangement to ful�l the require-
ments [10]. Furthermore, an adaptive element is connected
in series to the integrative element to implement a pulse
term (also called momentum) which has been proved to ac-
celerate the learning process [11].

3. NEUROHARDWARE IMPLEMENTATION

The hardware to be implemented has to ful�l at least two
requirements:

� to show the feasibility of combining blind source sepa-
ration and digital bit-stream techniques

� to o�er the opportunity to tune hardware parameters,
e.g. to optimize the learning behavior

A PC board has been developed with programmable pa-
rameters and several test functions (Figure 4). One self-
designed VLSI neuro chip (1.0 �m digital CMOS, 10 mm2

core) and six complex programmable logic devices (AMD's
MACH circuits) contain all the necessary elements and the
bus interface.

Figure 4: Photo of the PC board containing the neuro chip
(center, at the bottom)

4. EXPERIMENTAL RESULTS

The PC board has been tested and is running up to a fre-
quency of 14 MHz. An exemplary signal separation is illus-
trated in Figure 7. The two source signals

x1 = sin(2� � 10Hz � t) � sin(2� � 300Hz � t) and

x2 = sin(2� � 50Hz � t)

are mixed by the following matrix

A =

�
0:8 0:2
0:5 0:5

�
:

Figure 5: Plot of 50000 pairs of calculated weights during
2 � 108 hardware clocks (starting with w12 = w21 = 0)

The mixed signals are separated quite well but with addi-
tional noise as expected from digital stochastic computing.
In the graph of the weights (Figure 5 and 6) the noise is
clearly visible. Furthermore, the computed weights con-
verge to slightly di�erent values compared with numerical
simulations utilizing oating point arithmetic. This is com-
prehensible since the transformation of the mixed signals
into stochastic bit-streams leads to an independent noise
portion in the representation which cannot be separated by
the algorithm.
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Figure 6: Plot of the distribution of 50000 calculated
weights during 2 � 108 hardware clocks (starting with w12 =
w21 = 0)

It was possible to archieve good results in signal sepa-
ration by determining suitable hardware parameters, e.g.:

{ 4096 hardware clocks per signal sample

{ 12 bit counter length of integrative elements

{ 15 bit counter length of adaptive elements

{ n = 2 for learning function �(x) (see Figure 3)

{ n = 4 for learning function  (x)
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Figure 7: Time dependence of the output signals and the weights. The right side of the diagram is enlarged.

It should be emphasized that only such signals can be
separated, where the synaptic weights have a solution in
the range of [0,1]. This can be guaranteed in the case that
the sum of all elements of each line of the mixing matrix A
is equal to 1:

X
j

aij = 1; 8 i

Following Herault and Jutten [6, 7] the output signals
theoretically have the form

si = yi �
X
k 6=i

ciksk; 8 i:

In this case however, the area of signals to be separated is
diminished due to range limitations caused by the digital
stochastic computing.

5. CONCLUSION

It has been shown that it is feasible to combine the features
of digital stochastic computing with the requirements of
blind source separation. In the case of two input signals
the separation works quite well. Only for high accuracy
applications the residual scattering of the weights gives rise
to limitations.

Stochastic computing simpli�es the processing elements
signi�cantly, and, thus, allows to implement the complete
separation algorithm in digital VLSI technology. In princi-
ple, it is easy to scale the design to more than two input
signals. However, the convergence of larger networks has
still to be investigated.
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