
USING PHIPAC TO SPEED ERROR BACK-PROPAGATION LEARNING

Je� Bilmes�;y, Krste Asanovi�c�;y, Chee-whye Chin�, and Jim Demmel�

fbilmes,krste,cheewhye,demmelg@cs.berkeley.edu
�Department of Electrical Engineering and Computer Sciences

University of California at Berkeley
Berkeley, CA 94704, USA

yInternational Computer Science Institute
1947 Center Street, Suite 600
Berkeley, CA 94704, USA

ABSTRACT

We introduce PHiPAC, a coding methodology for develop-
ing portable high-performance numerical libraries in ANSI
C. Using this methodology, we have developed code for
optimized matrix multiply routines. These routines can
achieve over 90% of peak performance on a variety of cur-
rent workstations, and are often faster than vendor-supplied
optimized libraries. We then describe the bunch-mode
back-propagation algorithm and how it can use the PHiPAC
derived matrix multiply routines. Using a set of plots, we
investigate the tradeo�s between bunch size, convergence
rate, and training speed using a standard speech recogni-
tion data set and show how use of the PHiPAC routines
can lead to a signi�cantly faster back-propagation learning
algorithm.

1. INTRODUCTION

Signal processing algorithms such as neural network learn-
ing, convolution, cross-correlation, IIR �ltering, etc., are
often computationally time-consuming. These algorithms,
often used in time-critical applications, should therefore be
coded as e�ciently as possible.

One way to achieve high e�ciency is to code in assembly
language, but it is then di�cult to make a full exploration of
a routine's design space, and the resulting code might be un-
usable or sub-optimal on di�erent platforms. Alternatively,
the algorithms could be written in a high-level language and
fed to an optimizing compiler. While there is a large liter-
ature on relevant compiler techniques [14, 10, 11, 1, 6, 12]
that can be used to generate reasonably good code in gen-
eral, they tend not to generate near-peak code for any one
operation. Moreover, it takes signi�cant time and invest-
ment before compiler research appears in production com-
pilers, so these capabilities are often unavailable. Further-
more, a high-level language's semantics combined with a
casual coding style might obstruct aggressive compiler op-
timizations even if they are available.

We have developed a methodology, named PHiPAC, for
developing Portable High-Performance numerical libraries
in ANSI C. Our goal is to produce, with minimal e�ort,
high-performance numerical libraries for a wide range of
systems. Using this methodology, we have produced a
portable, BLAS-compatible [7], matrix multiply generator.
The resulting code can achieve over 90% of peak perfor-
mance on a variety of current workstations, and is often

faster than the vendor-supplied optimized libraries. We
have used the resulting code to produce an optimized back-
propagation learning program that is much more e�cient
than many existing programs.
In Section 2., we brie
y describe the PHiPAC method-

ology used to generate the matrix multiply code. In Sec-
tion 3., we use the resulting matrix multiply code to im-
plement a bunch-mode back-propagation training program
that uses multiple rather than one training pattern for each
weight update. We investigate the tradeo�s between bunch
size, convergence rate, and training speed using a standard
speech recognition data set. Finally, in Section 4. we con-
clude and describe future work.

2. PHIPAC

The PHiPAC methodology for producing high performance
code consists of three primary components.
The �rst component is a generic model of current mi-

croprocessors and their C compilers { this provides guide-
lines for producing portable high-performance ANSI C
code. By analyzing a range of machines such as work-
stations and microprocessor-based shared-memory multi-
processor (SMP) and massively parallel processor (MPP)
nodes, we've created a list of common micro-architectural
features. In addition, we've found that production ANSI
C compilers usually perform reasonable register allocation,
instruction selection, and instruction scheduling. However,
more sophisticated optimizations, including pointer alias
disambiguation, register and cache blocking, loop unrolling,
and software pipelining, are best performed manually. The
actual micro-architectural features along with the resulting
C coding guidelines are fully described in [5].
The second component of the PHiPAC methodology is to,

rather than hand-code particular routines, write parameter-
ized generators [1, 11] that produce code according to our
guidelines. A generator has several advantages over a single
instance of a routine. First, the algorithm's entire design
space can be explored by varying the generator parameters
and timing the resulting routines. Second, and perhaps
surprisingly, a generator can often be easier to write than
a single optimized routine, especially when the optimized
routine contains a high degree of register blocking and loop
unrolling. Third, a generator's end result is performance

portable since di�erent versions of the code can easily be
created for di�erent microarchitectures.

The third PHiPAC component is a search script that au-



tomatically tunes code for a particular system by varying
a generator's parameters and benchmarking the resulting
routines. For each combination of generator parameters
and compilation options, the search script calls the gen-
erator, compiles the resulting routine, links it with timing
code, and benchmarks the resulting executable. We assume
that we have all machine speci�c information, such as the
number of integer and 
oating-point registers and sizes of
each cache level, available at the start of the search.
The combination of these three components yields a tech-

nique for quickly obtaining highly optimized routines for a
range of architectures. We have applied these techniques to
the development of a generator and search scripts for the
matrix multiply operation.
mm gen is a generator that produces blocked matrix mul-

tiply code [8], following the PHiPAC coding guidelines. It
generates code for the operation C = �op(A)op(B) + �C

where op(A), op(B), and C, are respectively M�K, K�N,
and M�N matrices, � and � are scalar parameters, and
op(X) is either transpose(X) or just X. Details of the re-
sulting code are described in [5].
Figure 1 shows the performance of naive matrix-multiply

code, the vendor supplied optimized and assembly coded
BLAS routine, and our matrix multiply code. See [5] for a
set of additional plots showing similar PHiPAC performance
advantages.

0 50 100 150 200 250 300
0

10

20

30

40

50

60

PHiPAC

SGI R4k assembly libblas_mips2_serial.a

naive

Square matrix size

M
F

LO
P

S

Figure 1. Performance of the naive code (3

nested loops), an SGI supplied matrix library, and

PHiPAC matrix multiply for square matrices on an

SGI Indigo R4K 100 MHz.

In this paper we concentrate on matrix multiplication and
back-propagation, but we have produced other generators
including convolution, dot-product, and AXPY, which have
similarly demonstrated portable high performance.

3. BUNCH-MODE BACK-PROPAGATION

LEARNING

In [9], two modes of back-propagation learning were de-
�ned, on-line mode where only one training pattern is used
at a time to update the weight matrices, and batch mode
where all training patterns are used simultaneously to up-
date the weight matrices. An alternate strategy, which we

call bunch-mode (also called block-mode [2, 3]), uses more
than one training pattern simultaneously to update the
weight matrices. Let np equal the number of training pat-
terns being processed simultaneously (i.e., the bunch size).
When np = 1, the back-propagation learning algorithm in-
herently uses matrix-vector operations. When np > 1, how-
ever, the algorithm can be formulated to use matrix-matrix
operations. It is well known that matrix-matrix operations
can be coded much more e�ciently, especially for larger ma-
trix sizes [7]. Therefore, larger bunch size back-propagation
learning should have a speed advantage.
Using the PHiPAC derived matrix-multiply routines,

we have therefore implemented a bunch-mode back-
propagation learning algorithm. Let ni equal the number
of network inputs, nh equal the number of hidden units, no
equal the number of outputs. Also, let I be the np � ni
matrix of input patterns, H (resp. �H) be the np�nh ma-
trix of hidden units (resp. delta hiddens), O (resp. �O, T )
be the np� no matrix of output units (resp. delta outputs,
target patterns), Wih be the nh�ni input to hidden weight
matrix, and Who be the no � nh hidden to output weight
matrix.
The following is a simpli�ed version of a single bunch-

mode learning step for a three-layer multi-layer perceptron
with logistic hidden and output units. In the following (as
in Matlab) � denotes normal matrix multiply, :� denotes el-
ement wise matrix multiply, and g(x) denotes logistic func-
tion application to each element in the matrix x.

H = g(I �WT
ih)

O = g(H �WT
ho)

�O = O: � (1�O): � (T � O)
�H = H: � (1�H): � (�O �Who)
Who = Who + ��OT �H

Wih = Wih + ��HT � I

As can be seen, this algorithm can be implemented with
the matrix operations C = A � BT , C = A � B, and C =
C + �AT � B all of which can be generated by mm gen.
The bunch size, controlled by the parameter np, a�ects

two aspects of the training algorithm. As np changes, the
inherent convergence rate | i.e., the number of epochs
required to achieve a given epoch sum-of-squared error
(ESSE) | can change. On the other hand, as np increases
from 1, the time per epoch will decrease. Therefore, there is
typically some np which achieves the best tradeo� between
the two for a given learning task.
The following graphs display 3-layer MLP training per-

formance results for a standard speech data set.1 The net-
work consists of 153 (9 frames of 17 features) input, 200
hidden, and 61 phonemic output units. There are roughly
75,000 training patterns. All training was done on an IBM
RS6000/590, which has a peak speed of 266 MFLOPS.
Figure 2 graphs the MCUPS (millions of connection up-

dates per second) as a function of the bunch size. While
we are guaranteed an increase in MCUPS as the bunch size
increases from 1 because of better matrix blocking, we are

1A telephone quality database of digits and control words

from Bellcore that we call \digits+".



not in general guaranteed that the convergence rate will not
o�set these gains and result in a poorer performing training
algorithm. The following results show, however, that in this
task there is a signi�cant advantage to larger bunch sizes.
All of the following plots use ESSE as an error mea-

sure. For a particular task, it might be more relevant to use
a di�erent measure such as cross-validation error or some
higher level classi�cation error. Nevertheless, we chose to
use ESSE for two reasons. First, it is a general error mea-
sure unspeci�c to any particular application. Second, and
more importantly, the back-propagation learning algorithm
we tested attempts to minimize the following cost function:

J =
1

2

X

n

(Tn � On)(Tn � On)
T

where Tn is the target and On is the output for the nth pat-
tern. By observing the evolution of ESSE for a given bunch
size, we therefore can see how this cost function decreases
over epoch presentations.2

0 5 10 15 20 25 30 35
15

20

25

30

35

40

bsize

M
C

U
P

S

Figure 2. MCUPS vs. bunch size.

Figure 3 graphs the number of epochs required to reach
a certain ESSE. The graph shows that for this task conver-
gence is faster for smaller bunch sizes although the e�ect is
not large. In other words, larger bunch sizes tend to take
more epochs to reach a certain ESSE.
Figure 4 combines the information given in Figures 2 and

3 by plotting the time required to achieve a given ESSE as
a function of bunch size. Observe that for all the ESSE
values listed, the speed advantage of larger bunch sizes out-
weighs the corresponding decrease in algorithmic conver-
gence. Therefore, this plot shows runtime advantage for
using greater than unity bunch sizes.
Figure 5 graphs the speedup, or the time for unity bunch

size divided by the time for each bunch size, vs. the log
of ESSE. Note that in this plot, time moves forward from
right to left as log ESSE gets smaller. We see that at best,
a bunch size of 4 (highlighted in Figures 3 and 4) results in
a 2.18 speedup over a bunch size of 1.

2ESSE would therefore be inappropriate for other cost func-

tions, such as cross entropy.

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4 Required run time to achieve ESSE value

bsize

R
eq

ui
ed

 r
un

 ti
m

e 
(s

ec
)

bsize=4

2.9733e4
2.4343e4

1.9930e4

1.6318e4

1.3360e4

Figure 3. Epochs to reach a given ESSE vs. bunch

size.

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

bsize

R
eq

ui
re

d 
ru

n 
tim

e 
(s

ec
)

bsize=4

2.9733e4
2.4343e4

1.9930e4

1.6318e4

1.3360e4

Figure 4. Time required to achieve a given ESSE

vs. bunch size.

The above results show that, even in a case where the
algorithmic convergence is adversely e�ected by increasing
the bunch size, the corresponding increase in speed obtained
by the faster matrix multiply routine can result in an over-
all reduction in the wall-clock time necessary to reach a
given ESSE. Note that as np increases from one, the set of
operations performed during a training doesn't change. In
order to further decrease training time by changing the algo-
rithmic convergence, additional techniques such as dynamic
learning rate adjustment, random pattern presentation, mo-
mentum, etc [13] can be used together with the bunch-mode
backpropagation algorithm. Some combination of both al-
gorithmic techniques and the use of matrix-matrix multiply
will probably result in an optimal back-propagation learn-
ing algorithm for a given task. In fact, PHiPAC matrix
multiply code has been successfully integrated into a more
general neural network simulation program, QuickNet, that
is in common use here at ICSI for our speech recognition
tasks.



9 9.5 10 10.5 11 11.5
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

log(ESSE)

S
pe

ed
up

bsize=16

bsize=8

bsize=2

bsize=4

Figure 5. Speedup over unity bunch size.

4. CONCLUSIONS

We have described how the PHiPAC coding methodology
can be used to produce performance portable matrix-matrix
multiply routines and how these routines can be used to
speed the execution of the back-propagation learning algo-
rithm.
In the future, we plan to write search scripts for the con-

volution generator, write generators for more operations
such as cross-correlation, FFTs, IIR �ltering, and matrix-
transpose, and demonstrate the viability of this technique
to more general signal processing and numerical algorithms.
The PHiPAC matrix multiply generator, search scripts,

and a demonstration of bunch-mode back-propagation code
in C are all available from the PHiPAC WWW site [4].

REFERENCES

[1] B. Alpern, L. Carter, and J. Ferrante. Space-
limited procedures: A methodology for portable high-
performance. In International Working Conference on

Massively Parallel Programming Models, 1995.

[2] D. Anguita and B. Gomes. MBP on T0: mixing

oating- and �xed-point formats in BP learning. Tech-
nical Report 94-038, ICSI, 1994.

[3] D. Anguita, G. Parodi, and R. Zunino. An e�cient im-
plementation of BP on RISC-based workstations. Neu-
rocomputing, 6:57{65, 1994.

[4] J. Bilmes, K. Asanovi�c, J. Demmel, D. Lam, and
C.W. Chin. The PHiPAC WWW home page.
http://www.icsi.berkeley.edu/~bilmes/phipac.

[5] J. Bilmes, K. Asanovi�c, J. Demmel, D. Lam, and C.W.
Chin. PHiPAC: A portable, high-performance, ANSI
C coding methodology and its application to matrix
multiply. LAPACK working note 111, University of
Tennessee, 1996.

[6] L. Carter, J. Ferrante, and S. Flynn Hummel. Hier-
archical tiling for improved superscalar performance.
In International Parallel Processing Symposium, April
1995.

[7] J. Dongarra, J. Du Croz, I. Du�, and S. Hammarling.
A set of level 3 basic linear algebra subprograms. ACM
Trans. Math. Soft., 16(1):1{17, March 1990.

[8] G.H. Golub and C.F. Van Loan. Matrix Computations.

Johns Hopkins University Press, 1989.

[9] J. Hertz, A. Krogh, and R.G. Palmer. Introduction to

the Theory of Neural Computation. Addison Wesley,
1991.

[10] M. S. Lam, E. E. Rothberg, and M. E. Wolf. The cache
performance and optimizations of blocked algorithms.
In Proceedings of the Fourth International Conference

on Architectural Support for Programming Languages

and Operating Systems, pages 63{74, April 1991.

[11] J.D. McCalpin and M. Smotherman. Automatic bench-
mark generation for cache optimization of matrix algo-
rithms. In R. Geist and S. Junkins, editors, Proceed-
ings of the 33rd Annual Southeast Conference, pages
195{204, New York, NY, March 1995. Association for
Computing Machinery, ACM.

[12] R. Saavedra, W. Mao, D. Park, J. Chame, and
S. Moon. The combined e�ectiveness of unimodular
transformations, tiling, and software prefetching. In
Proceedings of the 10th International Parallel Process-

ing Symposium. IEEE Computer Society, April 15{19
1996.

[13] Dilip Sarkar. Methods to speed up error back-
propagation learning algorithm. ACM Computing Sur-

veys, 27(4):519{544, December 1995.

[14] M. E. Wolf and M. S. Lam. A data locality optimizing
algorithm. In Proceedings of the ACM SIGPLAN'91

Conference on Programming Language Design and Im-

plementation, pages 30{44, June 1991.


