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ABSTRACT

This paper introduces the concept of structural
subband decomposition of sequences, a generaliza-
tion of the polyphase decomposition of sequences,
and outlines a number of applications of this con-
cept, such as efficient FIR filter design and imple-
mentation, adaptive filtering, and fast computation
of discrete transforms.

1. STRUCTURAL SUBBAND
DECOMPOSITION

Any finite- or infinite-length sequence {x[n]}
with a z-transform X(z) can be written as

M-1
X@)= Y xinlz® =Y X, (M)zk

N=—co k=0
Xo(zM)
M
=[t 2 .. -] Xx(:z ) )
Xp_1(@ZM)

where

Xg(z)= ) xMn+k]z",0SksM-1  (2)

n=—oo

The right-hand side expression of Eq. (1) is
called the polyphase decomposition of the trans-
form X(z) with the functions X;(z) being the
poly-phase components of X(z) [1]. If x [n]
denotes the inverse z-transform of X, (z), then

xi[n] =x[Mn +k], 0SkSM-1,
i.e., the sequence x;[n] is simply obtained by

down-sampling x[n] by a factor of M with k in-
dicating the phase of the sub-sampling process.
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A generalization of the polyphase decom-
position of Eq. (1), called the structural subband
decomposition of X(z), is given by [2]

Vo(ZM)

v, (zM)

X(z)=[l z-l .. Z‘(M'l)]

3
VM-—l (ZM )
where T = [tij] is an MXM nonsingular matrix,
Relation between the polyphase components X, (z)
and the generalized polyphase components Vi (z)
are given by:
Vo(2) Xo(2)
Vi(z X (z
1:( A ‘:( ) @)
VM-1(2) Xm-1(2)
Depending on the application, the matrix T can

have various forms. Some novel applications of
structural decomposition are outlined next.

2. EFFICIENT FIR FILTER DESIGN AND
IMPLEMENTATION

Consider an FIR filter H(z) with an impulse re-
sponse {h[n]} of length N with N = PxM, where P
and M are positive integers. By applying the struc-
tural subband decomposition of Eq. (2) to H(z) we
can express it in the form:

Go(ZM)
M
H(Z)=[1 z7l ... Z“(M‘l)]T Gl(:z ) (52)
v GM_l(ZM)

or, equivalently as
M-1

H@)= Y L, (2)G (M), (5b)
k=0
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where I (z) is given by
M-1 )

L(z)= Ztkn. #1274
=0

k=0,1,....M-1. (6

Realizations of H(z) based on the structural
subband decomposition are shown in Figure 1. It
should be noted that the delays in the implementa-

tion of the sub-filters Gk(zM) in Figure 1 can be
shared leading to a canonic realization of the
overall structure.

Computational complexity of the overall struc-
ture can be reduced by choosing "simple" invertible
transform matrices T. One such matrix is the
MxM Hadamard matrix Ry which is given by

RM =R2 ®R2®"‘®R2 (7)
L-terms
where R, and ® denotes the Kronecker

1 -1
product. From Eq. (7) it can be seen that M must
be a power-of-two, i.e.,, M = oL,

x(n)

x(m) —y—_lo(® [ o™
— L, B o,e™

— L@ P 6;6™

)

Figure 1

For an M-branch decomposition, note also that
the subfilter I5(z) has a lowpass magnitude

response given by sin(May2)/sin(®/2), whereas, the
subfilter 1,(z) has a highpass magnitude response
given by sin[M(x — ®)/2]/sin[(x —®0)/2]. Each of
the remaining subfilters I (), fork # 0, 1 have a
bandpass magnitude response. Each of the
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branches in the realization of Figure 3(b) thus
contributes to the overall response essentially
within a "subband" associated with the
corresponding interpolator. For some narrow-band
FIR filters, it is possible to drop from the subband
decomposition structure branches that do not
contribute significantly to the overall frequency
response, thus resulting in a computationally
efficient realization.

The structural subband decomposition of an
FIR transfer function H(z) also simplifies con-
siderably the filter design process. To this end, two
different design approaches have been advanced
recently. In one approach, each branch is designed
one-at-a-time using either a least-squares
minimization method or a minimax optimization
method [2]. In the second approach, each subfilter
is designed using a frequency-sampling method [3].

The structural subband decomposition-based
structure can be computationally more efficient
than the conventional polyphase decomposition-
based structure in realizing decimators and in-
terpolators that employ linear-phase Nyquist filters.
To this end, it is necessary to use transform
matrices that transfer the filter-coefficient sym-
metry to the sub-filters, .

3. SUBBAND ADAPTIVE FILTERING

The structural subband implementation of FIR
filters can be applied to adaptive filtering, resulting
in a structure which unifies the direct form and the
transform-domain implementations of the least
mean squares (LMS) algorithm [4, 5]. The
adaptive subband structure is illustrated in Figure 2
below. Note that the structure used in the
transform-domain LMS algorithm is obtained from
Figure 2 for M = N, i.e. P = 1, in which case each
of the subfilters consists of a single coefficient [6].
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In this structure, the input signal is first pro-
cessed by a fixed orthogonal transform T of length
M, and the resulting transformed signals are then
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filtered by sparse adaptive subfilters Gi(zM). The
choice of a transform T with good frequency selec-
tion decreases the correlation among the trans-
formed signals, which can be used to obtain a
significant improvement in the convergence speed
of the LMS algorithm for colored input signals. To
this end, the discrete Fourier transform (DFT) or
the discrete cosine transform (DCT) has been found
to be useful [4]). Also, the subband structure has the
flexibility of allowing that subbands not
contributing greatly to the overall frequency
response be removed, reducing the number of
operations needed for the filter implementation,
such as in adaptive line enhancer (ALE)
applications. Other adaptive methods, such as the
recursive least squares (RLS) algorithm, can also
be used to update the coefficients of the subfilters.
In the case of a subband decomposition using a
"good" transform, the subband signals are approxi-
mately orthogonal; so, each of the sparse filters
Gi(zM) can be independently adapted in parallel by
the RLS algorithm, resulting in a reduction in the
computational complexity, and speeding up of the
convergence.

The adaptive FIR filter structure based on the
structural subband decomposition has also been
shown to be considerably more fault-tolerant than
the conventional direct form FIR adaptive filter
structure [7].

5. EFFICIENT DISCRETE TRANSFORM
COMPUTATION

Fast algorithms for calculating the discrete
transform coefficients which makes use of fre-
quency separation property of the structural sub-
band decomposition have been developed [8]-[10].
For example, the N-point DFT X(k) of a sequence
x(n) of length N is simply given by

X[k]=X(2)|, _ oj2nk/N. OSKSN-1 (9

Consider a 2-branch structural subband decom-
position of X(z) based on the Hadamard transform.
Then we can write

V(22 )]

X@=[t Z“]Rz[vl(zz)

=14z )Vy(z2)+(-z"1)Vy(z2).  (10)
Therefore X[k] can be expressed as:

X[k] = (1+ Wy “)Xo(<k>y/)
+A-Wy Xy(<k>yp) (1)

where we have used the notations Wy = e‘jz"/N.
<k>\ =k modulo N. In above, Xj[<k >Nny2lis
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the (N/2)-point DFTs of the length-(N/2) sequence
XO[n], and X1[<k >N/2] is the (N/2)-p0int DFTs
of the length-(N/2) sequence x,[n], generated by

the 2-branch structural subband decomposition of
x[n]:

xp[n]= l{x[2n] +x[2n+1]},
2 0<k<N-1. (12)
x;[n]= E{x[2n] —x[2n+1]},

The computation of the N-point DFT using Eq.
(15) requiring the computation of two (N/2)-point
DFTs has been referred to as the subband DFT [8].
The above process can be continued to decompose
the sub-sequences xg[n] and x,[n] provided N/2 is
an even integer. The process terminates when the
final sub-sequences are of length-2.

By exploiting the spectral contents of the sub-
sequences, an efficient DFT algorithm can be
developed. For example, if x[n] is known to have
most of its energy contents in the low frequencies, a
reasonable approximation of the overall transform
can be obtained by discarding the term

X;l<k>Np] in Eq. (11) arriving at an
approximation to the N-point DFT X[k] given by

X[k]= 1+ Wy 5)Xo(< k>N 9)- (13)

The structural subband decomposition concept
has also been applied to the efficient computation
of the discrete cosine transform (DCT) 11, 12].
The N-point DCT of a length-N sequence x[n] is

given by
N-1
(2n+l)1rk)
Clk]= ) 2x[n]cos| ~——| O<k<N-1
k] % x[n] ( N

(14)
Using Eq. (12), Eq. (14) can be reexpressed as

k \—
Clk]= 2cos(-2-§)co[k]

(7K Ve
+2s1n(§§)sl[k], 0SksSN-1, (15)

where
N
Colkl, 0<ks<-1,
Cylk]=1 0, k=—21i. (16)
-Cy[N K], §+ISkSN—l,
arn \
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8, (K], OSRS%—I,
_ (N-2)/2 N
Skl={2 Y (-xjlnl, k=3, (D
2
n=0 N
SN-kl,  +I1SkSN-1,

with C[k] denoting the (N/2)-point DCT of xy[n],
and S,[k] denoting the (N/2)-point DST (discrete
sine transform) of x;[n]. The computation of the
N-point DCT using Eq. (15) requiring the
computation of an (N/2)-point DCT and an (N/2)-
point DST has been referred to as the subband DCT
[12]. The above process can be continued to
decompose the sub-sequences xo[n] and xl[n]

provided N/2 is an even integer. The process
terminates when the final sub-sequences are of
length-2.

As in the case of subband DFT, by exploiting
the spectral contents of the sub-sequences, an effi-
cient DFT algorithm can be developed. For exam-
ple, if x[n] is known to have most of its energy con-
tents in-the low frequencies, a reasonable approxi-
mation of the overall transform can be obtained by
discarding the terms in Eq. (15) associated with
high frequencies resulting in approximation to the
N-point DCT given by

7K < N
Clk]= Zws(ﬁ)co[k], k—O,l,...,?—l, as)
0, otherwise.

The subband DCT computation has been
shown to result in less visible border artifacts when
applied to very low bit ratre image compression
than that resulting from the direct DCT
computation used in the JPEG standard [11,12].

Another interesting application of the structural
subband decomposition is in the development of a
fast dual-tone multi-frequency (DTMF) tone detec-
tion scheme using the subband nonuniform DFT
computation [13].
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