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ABSTRACT

Recent advances in joint acoustical/visual analysis for
model-based lip motion synthesis is presented. The 2D
lip motion field is modeled as a linear combination of a
low dimensional motion basis computed through Prin-
cipal Component Analysis (PCA). The vector of PCA
coeflicients is expressed as a function of a limited set
of articulatory parameters which describe the external
appearance of the mouth. The acoustical processing
estimates these articulatory parameters from the di-
rect analysis of the speech waveform based on a neural
processing stage, i.e. through a bank of Time Delay
Neural Networks. The achieved results have been sub-
jectively evaluated by visualizing the estimated motion
on a wire-frame mouth template presented in synchro-
nization with speech. The experiments carried out so
far deal with single-speaker trained TDNNs and with
single-speaker PCA, but suitable algorithms for gener-
alizing the techniques are currently under investigation.

1. INTRODUCTION

Much work in speech and video processing has over
the recent years been directed towards the integration
of articulatory, acoustical, and perceptual data. In this
paper we consider the so called articulatory parameters
often used in phonetics to characterize articulation, and
a method is proposed to extract them from the speech
signal and to drive active shape models for image syn-
thesis.

In normal face-to-face communication, visual and
auditive stimuli are integrated, as there exist rules
for the correspondence between articulatory gestures,
shape of the vocal tract, and the structure of the acous-
tic speech signal. This integration of stimuli is charac-
teristic of the bimodal nature of speech communication.

Bimodal speech processing concerns the processing
of speech where visual and acoustical information are
utilized jointly. It has produced significant results in a
variety of applications like speechreading systems [1],
visual speech recognition [2], lip motion synthesis from
speech [3].
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In the following sections, the adopted lip motion
model is presented and the derivation of model param-
eters from both visual and acoustical analysis is de-
scribed along with some experimental results.

2. LIP SHAPE MODELING

In this section we give a definition of the lip represen-
tation that will be used as well as a description of the
active shape models. We represent the lip deformation
by K vertices in a two-dimensional wireframe structure
of polygons. The total set of vertices can be ordered
into a vector of vertical (v) and horizontal (h) coordi-
nates:

= ['Ulhl . -’UKhK]T €R2K,

We shall refer to such a vector as the lip shape
vector and to the 2K-dimensional space as the shape
space.

Lip deformation will be modeled as the transfor-
mation of a template lip shape vector into another

T :R2K LR2K,

where the transformation itself is a function of several
parameters. A lip shape z will be represented by or
synthesized as a transformed template lip shape zg:

z = T(zp).

As a model of deformations we use the Active
Shape Model (ASM) introduced in [4] for the analy-
sis and location of deformable objects.

The ASM models both rigid motion — scaling, rota-
tion and translation ~ and nonrigid deformation. Non-
rigid deformation is modeled with a set of basis vectors
in the shape space; to arrive at a deformed lip shape
there is added a linear combination of the deforma-
tion basis vectors to the template shape. The ASM ex-
presses a deformation of a template shape 2 by scaling
s, rotation through an angle @, translation t and non-
rigid deformation by adding a vector in a space spanned
by certain vectors {pi,...,pr}, to form the shape %,
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2 = T(zo) = sR(0) (230 + E’Yipi) +1 (1)

i=1

where t is the displacement vector and R denotes a
matrix that rotates every point around the origin by
the same angle 6.

The space spanned by the vectors {p,...,pr} will
hereafter be referred to as the nonrigid deformation
space. The vectors will be referred to as deformation
modes. If we order the basis for the nonrigid deforma-
tion space as columns in a matrix

P=[p: - -pi]

and the coefficients in a vector

9=,

we may write Equation 1 as

z= SR(G) (1,'0+Pg)+t. (2)

that we call the approximation expression.

The nonrigid deformation space is constructed us-
ing a training set of lip shape vectors. Supposing that
there are L training vectors, the mean shape vector
is used as the template shape vector which is sub-
sequently deformed. With reference to Equation 2,
zo = Z. The basis vectors {p1,...,pr} are the prin-
cipal components of the deformations in the training
set with respect to the mean shape vector.

3. FROM ARTICULATORY PARAMETERS
TO ASM COEFFICIENTS

In this section the relation between the articula-
tory parameters and the coefficients for the nonrigid
part of the ASM is discussed. The relation will be
expressed as a function that maps articulatory param-
eters to ASM coeflicients.

Letting J and I be the number of available artic-
ulatory parameters and of ASM nonrigid deformation
modes, respectively, the mapping (assumed linear for
simplicity) is of the type

F R’ -R!

and it will be referred to as the parameter transform.
The elements of the matrix F will be computed
using the same set of shape vectors as for constructing
the nonrigid deformation basis. In addition, to each
shape vector z; there will be assigned a vector a; of
articulatory parameters, forming the training set
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{{z1,a1) :1=1,...,L}.

The training set also implies coefficient vectors
that correspond to the shape vectors adjusted to render
unnecessary the rigid part of the ASM,

g1 = PT(z; - 2),

i.e. they are found by projecting the deviation from the
mean shape vector onto the space for nonrigid defor-
mation.

Now the criterion function for constructing the pa-
rameter transform can be derived. The coefficient vec-
tor g will be approximated by a function of the articula-
tory parameter vector a. The deformations are applied
to the mean shape vector z to which is associated the
parameter vector a, and in the case a = a the coef-
ficients vector should be zero. This is achieved if the
argument to the linear parameter transform is a — a.
Hence, we have

g F (a - a)’

and we can rewrite the approximation expression to
obtain the synthesis expression

Z=5sR(0)(Z + PF(a—a)) +1t. (3)

The goal is to find a parameter transform F that
minimizes the expected synthesis error

J(F) = & {|le - &|*} (4)

It can be demonstrated [5] that when J(F') is es-
timated over the training set, it can be minimized by
the parameter transform:

F = (UTU)"'07TG)"
where

(a; —a)T 9
U= , G=

(ar — a)T

4. ESTIMATION OF THE ARTICULATORY
PARAMETERS FROM SPEECH

The ASM coefficients have been computed from artic-
ulatory parameters estimated directly from the speech
source signal exploiting the intrisic audio-visual corre-
lation.

The speech signal has been sampled at 8 KHz and
quantized linearly at 16 bits before being processed
through the following steps:
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e spectral preemphasis;

e segmentation into non overlapped frames of dura-
tion T = 20 ms;

o linear predictive analysis of 10-th order;

e power estimation and computation of the first 12

cepstrum coefficients;
e normalization of the cepstrum coefficients to the

range [-1, 1].

The normalized cepstrum vectors are then input
to the conversion system based on a bank of TDNNs,
each of them trained to provide estimates of a specific
articulatory parameter.

In order to understand how many articulatory pa-
rameters are necessary to allow a faithful visual syn-
thesis of speech, a very large audio/video database has
been collected.

To simplify the extraction of the articulatory pa-
rameters from the video frames, the speaker’s face was
conditioned by means of lipstick and white markers
placed in correspondence to the tip of the nose and of
the chin. The mouth model which has been employed,
sketched in Fig. 1, is defined by a vector of parameters
extracted from the frontal view and described in Table
1.

Nose

Le {lup (Lup w

le

Chin
o

Figure 1: Articulatory parameters extracted from the
frontal view

The cross-correlation between these parame-
ters has been estimated in order to identify inter-
dependencies and to provide a basis of independent
parameters. From the experimental outcomes it has
been decided to use a basis of 9 parameters (W, h, w,
Lup, Lc, lup, Ic, A, Pe).

A distinct Time-Delay Neural Network [6] has
been trained for each independent articulatory param-
eter using as input the 12-dimensional vectors of the
cepstrum coefficients computed from the acoustic cor-
pus. The pattern-target comparison has been done in-
troducing a time delay between them in order to model
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Name Description

H Vertical opening of outer contours
w Horizontal opening of outer contours
h Vertical opening of inner contours

w Horizontal opening of inner contour

Lup Vertical distance from the
nose to the outer contour

Lc Vertical distance from the nose
to the corner of the mouth

lup Vertical distance from the nose
to the inner contour

le Vertical distance from the inner
contour to the chin marker

LM Vertical distance from nose to
the chin marker

A Area of the inner contour

Pe Perimeter of the outer contour

Pi Perimeter of the inner contour

Table 1: Description of the articulatory parameters
used to model the mouth motion

the forward coarticulatory effect: this means that the
current output of the network is made as similar as
possible to the articulatory parameter corresponding
to the acoustic unit displaced few frames back in the
past.

As reported in [6], the convergence of the network
has been studied with reference to different choices
of its parameters, namely the number of neurons, the
number of hidden layers, the TDNN memory, the in-
put acoustic representation (spectrum vs cepstrum)
and the pattern-target delay. The best results have
been obtained experimentally using networks with two
hidden layers, composed of 8 and 3 units each, whose
memory size is fixed to D(1) = 2 (first hidden layer),
D(2) = 3 (second hidden layer) and D(3) = 4 (output
layer). The pattern-target delay has been chosen equal
to b acoustic frames.

5. EXPERIMENTAL RESULTS

The methods proposed in the previous sections have
been applied to estimate and synthesize the lip move-
ments of a sample speaker, i.e. a young English-
speaking woman uttering nonsense consonant-vowel-
consonant words from a vocabulary developed to be
phonetically balanced. ! The recorded video corpus
is composed of RGB colour images of 352 x 288 pix-
els. The total sequence takes 100 seconds, and with 20
frames per second there are 2000 frames. The sequence

1The vocabulary was developed by the National Association
for the Deaf, Ireland.
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is divided into 1100 frames (55 seconds) for training and
900 frames (45 seconds) for test.

The linearity assumption for the parameter trans-
form, made in section 3, was tested by comparing the
synthesized coefficients with those corresponding to the
real shape vectors in the test set onto the nonrigid de-
formation space.

The coefficients corresponding to lip rounding and
horizontal opening were well synthesized. These two
modes account for 83% of the total energy (sum of
squared norms). The third coeflicient was rather badly
approximated, which means that one of the modes for
vertical opening did suffer. This is evidence that the
linearity assumption does not hold for this particular
deformation mode.

Figure 2: Corresponding synthetic (left) and real
(right) mouth shapes.

A first reason for this is that a linear transforma-
tion may be a too simple model for the relation between
the articulatory parameters and the ASM coefficients.
There may also have been a missing correspondence
between measured parameters and extracted contours
in our own data. A deeper discussion of this matter
can be found in [5]. The texture for the lip region in
one of the images was acquired and used for mapping
onto wireframe polygons. The wireframe vertices were
animated using the first six deformation modes con-
trolled by the 9 articulatory parameters chosen from
those in Table 1. The parameters were taken from a
subsequence of the test sequence. Fig. 2 shows some
examples of the obtained synthetic lips (left) against
the original shapes (right).
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6. CONCLUSIONS

A method has been described that estimates the artic-
ulatory parameters directly from the speech signal and
converts them into the synthesis coefficients of a non
rigid lip model. The articulatory parameters are esti-
mated by means of a suitable analysis of the speech sig-
nal performed by a bank of TDNNs. The ASM model
allows also the representation of non rigid lip motion,
for which a MSE optimal linear mapping from the ar-
ticulatory parameters to the ASM coefficients has been
devised. The experimental results performed so far
have confirmed that the approach is more than promis-
ing even from a perceptual viewpoint.
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