STAYING AHEAD OF THE GAME IN SILICON
FOR DIGITAL MOBILE COMMUNICATIONS

Ravi Subramanian', Marc Barberis', Herbert Dawid?, Klaus-Jurgen Koch?

[”Synopsys. Inc.
700 E. Middlefield Road
Mountain View, CA 94043, USA

email:

ravis@synopsys.com

[2]Synopsys‘ Inc.
Kaiserstrasse 100
52134 Herzogenrath, Germany
email: koch@synopsys.com

Abstract- While the mobile communication electronics

" industry’s appetite grows for ever more functions and ever higher
levels of integration, the complexily of these large designs is
creating a discontinuity in the method by which nese systems
are designed. In this paper, we will take a close look at what is
causing the design discontinuity, and how new design
technologies are being used to design advanced digital
communications systems for portable and wireless
communication applications. We will examine how system-level
design tools closely tied to silicon design implementation and
verification technologies are enabling the creation of digital
communications ICs in record time. We take several examples of
commercially available silicon solutions designed using these
methodologies- a G.721 ADPCM speech codec for cordless
telephony and a complete variable-rate digital-video broadcast
receiver for the DVB-S broadcast standard. Other examples of
lower complexity were presented earlier this year.

1. INTRODUCTION

. .
While the mobile communication electronics industry's appetite
grows for ever more functions and ever higher levels of
integration, the complexity of these large designs is creating a
discontinuity in the method by which these systems are designed.
In this paper, we will take a close look at what is causing the
design discontinuity, and how new techniques are being used to
design advanced digital communications systems for portable and
wireless communication applications. We f{irst look at the
phenomenon of silicon inversion and how it is changing design.
Then, we briefly review behavioral design before summarizing a
proven design methodology for the realization of digital
communication Ics [3]. We then look at several examples of
silicon on the commercial market that were realized using this
methodology.

II. SILICON INVERSION AND DESIGN METHODOLOGY

While silicon complexity continues to grow in excess of 10x (in

area or dynamic performance) every six years, the problem of

designing a mobile communications digital transceiver has run
into the silicon inversion problem. For two decades, silicon has
been used to mimic systems, and integration has been a way to
reduce cost or push existing products into new markets. This has
been especially evident in the mobile communications markets.
While design methodologies evolved from polygons, to gates. 1o
HDL (hardware description languages), the design of the
semiconductor solutions going forward is evolving back to
designing with "polygon-like” blocks- which are now taking the
form of cores (DSP and microcontrollers), algorithm accelerator
modules, peripherals, and interface modules.

Copyright 1997 |IEEE

In this new world, the design of the silicon solutions takes on a
completely different flavor. Designing a chip involves two
different flows- module design (to create the building blocks to
realize a funtion) and module reuse and integration (to define and
realize a system). This is shown in Fig. 1. More fundamentally,
tools to aid in the design of modules, i.e. module synthesis, will
emerge as distinct from tools that enable building a system-on-a-
chip, i.e. system synthesis, stitching together the modules.

System-Level Design

Module Synthesis

System On A Chip

Fig. 1. Designing a Digital Communication
System on a Chip

Module design involves system-level design creation and
optimization, and module implementation wusing module
synthesis capabilities, exploiting behavioral and RTL synthesis
and silicon compiler technologies. System synthesis involves
module interface synthesis, module design reuse, and mixed-level
verification.

Computer-aided design tools have provided an effective means of
designing microelectronic circuits for DSP applications. Today,
however, the silicon inversion phenomenon is forcing
fundamental change in how system-level design tools work
together with module implementation and verification tools.

Most system-level design tools allow designers to create,
optimize, and validate algorithms at both the floating and fixed-
point levels. The fundamental difference between these tools lies
in the modeling paradigm- dataflow vs. time-wheel driven. These
tools provide validation of an algorithmic model.

The first task in implementation is to partition the design into a
hierarchical structure which represents the physical partitioning

291

of modules. Each of the algorithmic modules is then translated by
hand into schematics or into standard HDLs.

Logic symthesis and silicon datapath compiler tools [4,6] are
then used to synthesize the gate-level description of the circuits.
If the design does not meet any of the area, timing, or other
dynamic performance objectives, the algorithms need to be
translated into a new architecture, assuming a different datapath. a
different controller, and a different memory, all of which needs to
be done manually.

iIl. BEHAVIORAL SYNTHESIS

Behavioral Synthesis [4] is the process of refining the
algorithmic specification of the behavior of a system o a
register-transfer level (RTL) structure that implements that
behavior, as shown in Fig. 2. This is in stark contrast to RTL or
logic synthesis, where the designer mentally conceives a certain
architecture through his RTL coding of the algorithm, and
tradeoffs and optimizations arc performed manually.

POR (i @ 10 7LOOF
WAIT won eu

Muttirycie Oporstion
Conotrainis mm-u
Fig. 2: The Behavioral Synthesis Process

The inputs to the behavioral synthesis procedure are
*Behavioral description of algorithm(s)
*Design Constraints
*High-Level Components Library
*Technology Library

2

The behavioral description consists of behavioral HDL code
which allows modeling of /O specifications, operations and
dataflow, control flow, and specification of storage elements.
Behavioral HDL is an architecture-neutral representation of an
algorithm.The design constraints at the behavioral level include
specifications on clock period, latency, throughput, and the
number and type of hardware resources. The high-level
component library describes the basic hardware resources
available to build the architecture. It consists of a set of hardware
implementations of that component, as well as the protocol for
using the components. The technology library is necessary to
build an architecture that meets the required constraints, since
area and timing information for each operation in the algorithm
must be correct.

The output of behavioral synthesis is a constrained RTL
architecture that consists of a datapath architecture, a memory
architecture, a Finite State Machine, and glue logic. Fig. 3 shows
the architecture generated by Behavioral Synthesis.

—
_—

Fig. 3: Architecture Generated By Behavioral Synthesis

Copyright 1997 IEEE

IV. A NEW DESIGN METHODOLOGY

The design flow we proposed in [3]) and demonstrate here allows
the engineer to rapidly explore the design space of algorithms,
architectures, ‘and implementation complexity.. Typically,
because of the wide range of phenomenon to be captured, there
exists no one tool able to handle this design task. Instead,
several tools providing the appropriate level of modeling are
used.

This new design flow is shown in Fig. 4 [See 3). This flow is
realized in the Synopsys solution via Behavioral and RTL HDL
code generation from the COSSAP™ DSP System Design tool.
and then using Synopsys’ Behavioral Compiler™ and Design
Compiler™.

The first task from algorithm to implementation is to partition
the design into a hierarchical structure which represents the
physical partitioning of processing elements. Once a group of
blocks to be sx@}hesized has been defined, there are two paths
available- behavioral and RTL synthesis. For those blocks where
operations c~-responding 10 high-cost resources (e.g.. adders,
multipliers) can be shared, the next step is to perform behavioral
synthesis in an attempt to select the best architecture that will’
improve performance or reduce gate count.

LN e,
W =

Dongn Farmoney
1] Gererevor:

I}
Desigr;fﬂullion B

Logic Simulation

mixed-level
| verification

Fig. 4: Proposed DSP System Design Methodology

The designer must, at a minimum, specify the desired clock speed,
the latency and the number of clocks per input sample. For faster
throughput, Behavioral Compiler™ will implement greater

- parallelism. It schedules resources to achieve each set of design

constraints. Examples of constraints on loop latency.
pipelining, and scheduling are shown below:

set_cycles -from_beginning
main/reset_loop/main_loop \
~to_end .

main/reset_loop/main_loop
fcyclesé .

pipeline_loop main/reset_locp. main_loop
«i @inite -] -@cycles®

schedule -area_based -io_mode superstate_fixed

In centain situations, the designer may want to re-partition the
system and try different groupings of functions. This is typically
done, for example, in the early stages of defining a chipset. In
some designs it makes sense 10 build a pre-specified architecture
at the RTL level if, for example, the operations are very simple
(e.g.. PN sequence generators, threshold comparators). Once each
module has been synthesized, the remaining effort is to merge the
pieces together. In the synthesis process, there is the potential

292

for mismatch due to variations in delay. The final merging
process requires that any sample delay mismatch be compensated
to insure all the pieces work properly together. The final step is
to simulate the synthesized fogic. The same stimulus which was
used to perform the system level simulations can be used to verify
the logic performance. The system level tool thus serves as a
system testbench for the complete ASIC.

V. DESIGN EXAMPLES

A. G.721 ADPCM Speech Codec

The example prescnted in this section is the commercial
implementation of a VLSI ADPCM codec core. The codec has to
be G.721-compliant and satisfy the tests a specified by ITU
G.726/32 standard input and output test sequences. Such cores are
extensively used in system silicon solutions for digital cordless
telephony all over the world,

The constraints for the implementation of this design were the
extremely tight schedule (under 6 months) and the extremely low
power requirement due (o ils use in a portable consumer product.
An area target had beeen specified as well, but this constraint can
usually be traded against better power peformance.

The main characteristics of the design are as follows:

- a low ADPCM coding rate of 32 kbits/s

- imensive DSP operations (* and +)

- numerous bit-exact operations

- numerous feed-back paths in the structure
The first two characteristics suggest the use of Behavioral
Compiler as there is room for architecturai exploration. The

numerous feed-back paths call for a sysiematic and rigorous .

testing scheme, as e.g. different initial values in a feed-back path
may lead to inconsistent results.

In a first step, the complete codec is modeled in COSSAP at the C
level to serve as a reference at any later stagc of the
implementation. This is shown in Fig. 5.

i ADPCM G721 Imeriesved ancoder- i oder

{,,

i

)

Fig 5: G.721 ADPCM Model In COSSAP

In order to minimize the probability of having errors in the HDL
code, two measures were taken: (1) the COSSAP code generator
was used (o automatically generatc ~a synthesizable VHDL
behavioral description for the complete system and (2) the
design was partitioned into sub-units which are to be tested
individually before generating the VHDL code for the complete
design

As a consequence, some sub-systems were defined that were not
directly available off-the-sheif from the COSSAP libraries. In
these cases, a behavioral VHDL description is written and
checked against the reference C code using the COSSAP co-
simulation capability with the VHDL System Simulator (VSS)

Copyright 1997 IEEE

from Synopsys. This means that individual modules can
conveniently be checked by taking out a C module or feeding the
particular VHDL module with the same data as the original C
model and comparing the outputs of the VHDL and the C models.
This modular approach proved to yield significant benefits in
terms of time-to-market, as the design lesting was both
drastically simplified argg considered very early in the process.

'C’ block disgram « SDS simutation
ransmitter
ding Channel [

COSSAP cosimulation madel
gensrated by xvei X7
] R
| by xveg)

L T

“Entty uncer tesf
compiste deaign

Fig. 6: Module Verification Using Co-Simulation

Once all modules in the COSSAP environment have a valid
behavioral VHDL description the COSSAP Code G- »rator can be
used to generate the synthesizable bchavioral description for the
complete codec. This code is then given straight to Behavioral
Compiler for architectural exploration.

The design goal is to achieve a low pbwer design- while
minimizing the area. The data rate is relatively low (32 kbit/s)
and allows to potentially use a clock up to 60 times faster or

more. Thus, the majn parameter for architectural exploration with .

Behavioral Compiler is the number of cycles per sample (NCS),
which can be seen as the ratio between the data rate and the clock
rate when no pipelining technique is used. The following chart
shows the area results for NCS ranging from 2 to 64.

ooy

et (ruintive}
SeOETIICRY combinetorial

Fig. 7: Results of Design Space Exploration for ADPCM Core .

It must be noticed that an increase in the NCS beyond 8 does not
yield any area gain, as the benefit of any further resource sharing
is outweighted by the cost of the sequential logic needed to hold
values for more cycles.

As mentioned earlier, the main constraint on this design is to
minimize the power consumption. First, it is crucial to be able to
get an accurale power estimate, in order to compare it with the
power target. Once again, COSSAP is used in combination with
VSS and Design Power from Synopsys: the gate-level netlist of
one synthesized architecture is simulated using COSSAP/VSS co-
simulation. This allows to feed the codec with real-world data,
that is data with the right statistics. During the VSS simulation, a
toggle file is created, which provides accurate .information on the
toggling of each single node in the netlist. This toggle file is
then passed on to Design Power, which computes an estimate of
the power consumption of that particular implementation.

293

The power estimation results proved that the power targert could
be met with an NCS=32. The slight area excess was deemed
acceptable as the power consumption turned out to be lower than
the target power level. Behavioral Compiler could achieve a very
low design power due to its ability to -on request- stall the input
of DesignWare components, thus preventing any parasitic
toggling within the DesignWare part when it is not being used.

B. Digital Video Broadcast (DVB-S) Receiver

As an illustration of the flow presented in the previous sections,
we examine the. HDM8511. a single-chip all-digital variable rate
(5-40Mbps) burs‘_t‘;-‘QPSK receiver with a concatenated code
decoder (Viterbi inner-code and Reed-Solomon outer-code). This
DVB receiver uses advanced DSP techniques to realize an all-
digital demodulator clocked at 60MHz [2].

There were several design constraints in order to achieve the
performance and cost targets for the silicon: (a) rapid acquisition
time, which requires the use of burst-type synchronization
algorithms, (b) all-digital implementation for cost-efficieny in
design. manufacture, and operation, as well as further chipset
integration in later versions of the product, (c) minimum area,
and (d) extremely- tight design schedule. In addition, a reliable
verification strategy was viewed as essential in order to ensure -as
much as possible- first-time silicon success.

To achieve these objectives and constraints, the design of the
communication system on a chip was broken down into three
tasks: system-level module design, module creation, and module
integration/verification. COSSAP was first used for modeling and
optimization of the complete digital communication system.
Modules were defined within the communication subsystem, and
Verilog HDL code was automatically gencrated from COSSAP for
these modules. COSSAP was also used for Verilog module
validation through mixed-level verification. N :

Step 1. System-Level Design in COSSAP- The COSSAP tool was
used to completely mode! the DVB encoded video sigral, channel
coder, modulator, ¢hannel, demodulator, and source decoder using
the standard communications and. fixed-point libraries. A
complete mode! of the DVB transceiver was built and the receiver
was described using fixed-point (bittrue) models. At that stage,
one of the most important operations for the success of an
implementation had been conducted: fixed-point optimization.
The flexible iteration optimization capability allowed for area
optimization in terms of the size of the operators, while
minimizing the implementation loss. This means that a virtual
prototype of the ASIC was readily available and its performance
in terms of BER and implementation loss could be investigated
before the ASIC was synthesized or even available in HDL
language. A COSSAP block of the DVB receiver is presented in
Figure 8.

Step 2. Implementation Specification- COSSAP Verilog Code
Generation was used to create the RTL implementation
specification. A key benefit of the process was the ability to
automatically generate Verilog code from the COSSAP block
diagram, hence ensuring functional correctness right from the
start. As the ratio between the clock rate and the data rate is very
low, thus leaving little room for resource sharing and
architectural exploration, an RTL approach was used.

Step 3. Verification- The co-simulation capability of COSSAP
with the Cadence Verilog-XL Verilog simulator was extensively
used during the whole design cycle to verify and validate the
functionality of the HDL-based receiver. This includes both the
receiver front-end for which RTL Verilog code was generated from
COSSAP as the channel decoding section (Viterbi decoder) which

Copyright 1997 IEEE

Fig. 8: Mixed-Level Verification of HDL in COSSAP

has been written by hand as a Verilog module. The Verilog code
was integrated into the COSSAP environment: as a result. the
confidence in the implementation was very high, as was further
confirmed by a first-time silicon success for the receiver front-
end.

Design Summary-An evaluation board was built with the
HDMS511 pre-production silicon in order o perform a last test

before production. The results of the pre-production board showed

a large correlation with the results from the COSSAP simulation,
thus substantiating the claim to be able to characterize a virtual
protoype of the chip at the COSSAP level early on in the process-
before any VHDL code has been written [2].

C. Other Examples

Finally, other examples using this methodology have been
presented in [3] and in references contained therein, including
FLEX paging receivers, spread-spectrum .receivers, front-end
filters for DSL modems, and Viterbi detectors for trellis coding.

VI. SUMMARY

We have demonstrated how modules for digital communication
transceiver chips are being designed in record time using new
design technologies that allow rapid algorithm optimization,
architectural exploration, and module synthesis. These design
solutions allow designers to meet stringent cost and power
targets through an efficient combination of design technologies
that define a.solution. We have demonstrated that with a very
short turn-around time, the problem of creating modules for
digital communications functions can be tackled effectively,
repeatably, and systematically. For designers making decisions
about digital communication system implementation, this
capability enables quick exploration of the hardware architecture
space and selection of the type of architecture that leads to an
efficient module implementation, as well as a powerful design
reuse capability.

REFERENCES
(1] H. Meyr and R. Subramanian, “Advanced Digital Receiver
Principles and Technologies for PCS,” IEEE Communications
Magazine, January 1995, pp.68-78.
[2) M. Paff, “Design and Implementation of a Variable-Rate
Digital Video Broadcast Receiver IC Using COSSAP,” Proc.
ICSPAT 96, Boston. MA, October 1996.
{3] R. Subramanian et al., “Design and Implementation of All-
Digital Receivers for Mobile Communications,” Proc. IEEE VTC
‘96, May 1996.
(41 R. Camposano and W. Wolf, “High-Level VLSI Synthesis.”
Kiuwer Academic Press. Boston, 1991.
[5] G. Feuweis et al., "On the Interaction Between DSP
Algorithms and VLSI Architecture,” ESA Workshop. ESTEC, The
Netherlands, Nov. 910, 1988.
{6] G. de Micheli, “Synthesis and Optimization of Digital
Integrated Circuits,” McGraw-Hill, New York, 1994.

294

