Audio Coding Using Sinusoidal Excitation

Representation

Wen-Whei Chang, De-Yu Wang, and Li-Wei Wang
Department of Communication Engineering
National Chiao-Tung university
Hsinchu, Taiwan, Republic of China

Abstract— Most LPC-based audio coders employ simplis-
tic noise-shaping operations to perform psychoacoustic con-
trol of quantization noise. In this paper, we report on new
approaches to exploiting perceptual masking in the design
of adaptive quantization of LPC excitation parameters. Due
to its localized spectral sensitivity, sinusoidal excitation rep-
resentation is preferred to spectrally flat signals for use in
excitation modeling. Simulation results indicate that the
proposed multisinusoid excited coder can deliver high qual-
ity audio reproduction at the rate of 72 kb/s.

I. INTRODUCTION

Since many years there has been considerable interest in
high-quality digital audio transmission at lower bit rates.
Most perceptual coding systems divide audio spectra into
critical bands and then quantize them in accordance with
the estimated masking threshold [1]. On the other hand, an
LPC-based coder considers audio waveforms to be outputs
from an all-pole filter that uses spectrally flat excitation
signals (Gaussian white noise for unvoiced signals and mul-
tiple impulses for voiced signals). Unfortunately, two obser-
vations have been made concerning the inappropriateness
of using LPC-based techniques to encode audio signals [2].
First, analysis of experimental data shows that real resid-
ual spectra exhibit predominantly pulselike trends, which
contrasts sharply with spectrally flat excitation represen-
tation. Secondly, most psychoacoustic experiment results
are expressed in the frequency domain and hence are not
directly applicable for use in conjunction with LPC models.

The strategy applied here is to represent excitation wave-
forms as a sum of sine waves with arbitrary frequencies,
amplitudes, and phases [3]. From the perspective of noise-
shaping, this sinusoidal excitation representation provides
an ideal framework for incorporating perceptual informa-
tions since individual sinusoids can be independently guan-
tized without the leakage of quantization noise from one
spectral line to another. This error localization property
also helps in developing a dynamic bit-allocation scheme re-
quired for perceptually optimal quantization of excitation
parameters.

II. MurtisinusoiD LPC CODERS

Conventional LPC coders use spectrally flat signals to
represent their excitation sources. To better match the
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peaky residual spectra, we propose to represent excitation
waveforms as a sum of sine waves with arbitrary ampli-
tudes, frequencies, and phases. Accordingly, the general
form of a multisinusoid excitation model is given by

M M '
e(n) = Ze;(n) = Zr,-cos(w,-nT+ $i), 1<n<N, . (1)
i=1

=1

where N is the subframe length, M is the number of sinu-
soids, and the r;, w; and ¢; represent amplitude, frequency,
and phase, respectively, of the ith sinusoidal component
ei(n). Fig. 1 illustrates the functional block diagram of
the proposed MultiSinusoid LPC (MSLPC) encoder. The
proposed system performs psychoacoustic control of quan-
tization noise by using a perception-based bit allocation, in-
stead of using a noise-weighting filter for excitation search,
as do conventional LPC coders. Two basic types of system
parameters can be identified: LPC parameters and exci-
tation parameters. The LPC analysis is performed with
autocorrelation method once per frame, whereas excitation
parameters are updated once per subframe. In our study,
monophonic audio signals with a bandwidth of 15 kHz were
sampled at 32 kHz and then segmented into frames of 300
samples long. Each frame was further divided into 6 sub-
farmes. Letting h(n) denote the impulse response of the
synthesis filter, we produce output signals y(n) by taking
the convolutional sum

M
y(n) =) [ashei(n) + Biksi(n)], 1<n<N,  (2)

=1

where «a; = r;co5¢; , i = —rising;, hei(n) = cos(w;nT) *
h(n), and h,;(n) = sin(winT) * h(n).

Accurate identification of excitation parameters can be
accomplished by minimizing the squared-error distortion
between the original signal z(n) and the output signal y(n).
This minimization process resulted in the matrix form of

§.§g=¢ (3)

where the entries in §, ¢ and S are given as follows for
1<j<2M and 1 <k <2M, respectively

g; = { GG/
J ﬂj/2)

J: odd

J: even

(4)
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¢ = z }:c(j+1)/21 J odd (5)
Tk j: even
’-"c(j+1)/2 . Ei(k+1)/2’ J: oddk: odd
E’ i12) Bt ) j: even k: even
Sjp= o R ®)
hc(j+1)/2'h,(k/2), j: odd,k: even
hsiroy - hi(k+1)/2’ J: even,k: odd.

Using the Cholesky factorization theorem [4], the equa-
tion above can be solved more efficiently by decomposing
the symmetric matrix S into the form of GG*, where G is

a lower triangular matrix with non-zero entries as follows:

ji—-1

Gij = |Sii—D G}, 1<ji<2M (7)
k=1
k-1

Gjr = =" GuGu)/Grr, 1<k <j—1.(8)
=1

Proceeding in this way, we can rewrite (3) as follows:

Gi = ¢ (9)
G'§ = ¢, (10)
where the entries in ¢ are given by
j-1
9 =(c; = D_Gjear)/Gjj , 1<i<2M. (1)
k=1

Using this notation, the least-squared-error distortion is
given by
WM _

min —

BTV — (daor + Bu)- (12)

From inspection of (12), it is evident that the optimum
values of the parameters {w;} and {ri,#;} can be inde-
pendently estimated. As regards the frequencies, a set of
L candidates was chosen once per frame by locating the
predominant peaks inherent in the associated audio spec-
trum. Next, only these L candidates were examined to
find the M best frequencies needed within each of its 6
constituent subframes. Towards this end, the frequency of
the ith component sine wave was taken as the location of
the particular candidate, maximizing the term (¢2;_, +4¢%).
Once the frequencies were determined, the optimal values
of {r;,#:}, which are exclusively embedded in §, could be
found by solving equation (10).

TII. QUANTIZATION AND BIT ALLOCATION

In this paper, we are more concerned with efficient quan-
tization aspects of LPC parameters and excitation parame-
ters. The class of audio coders discussed here were designed
to operate at the rate of 72 kb/s. Using an analysis frame
length of 9.375 msec, the total number of bits available per
frame is 675, with bits allocated to parameters as listed in
Table I. As the table shows, we need to transmit 78 bits
per frame as side information regarding the adaptation of
bit allocation to time-varying input signal variances.
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A. LPC parameters

In this experiment, 10th-order LPC analysis was cho-
sen to characterize the spectral envelope information of
incoming sound. Prior to transmission, these LPC pa-

rameters were transformed into line spectral frequencies

(LSF’s) and then quantized using split-vector quantiza-
tion at 24 bits/frame [5]. More explicitly, we divided the
vectors of 10 LSF’s into two parts: one consisting of the
first 4 LSF’s and the other consisting of the remaining 6
LSF’s. Each of these two parts was equally allocated 12
bits. We first examined whether LSF parameters could be
efficiently quantized using split-vector quantization. The
monophonic audio database for these studies consisted of
200 seconds of audio signals recorded from various musical
instruments. The first 170 seconds of music was used for
training, and the last 30 seconds of music was used for test-
ing. The performance was evaluated in terms of spectral
distortion (SD), defined as the root mean square difference
between the original LPC log-power spectrum and its quan-
tized version. An average SD of 1 dB is usually accepted
as the difference margin for spectral transparency. Since
no SD scores exceeded 1 dB for any of our test samples,
we can conclude that a split-vector quantizer can represent
ten LPC parameters at 24 bits per frame with transparent
quality.

B. Ezcitation parameters

The excitation parameters discussed here consist of the
frequencies, amplitudes, and phases of the component sine
waves. As regards the frequencies, a set of 13 spectral
peaks per frame were first located as candidates and then
examined to find the 7 best frequencies needed within each
of its 6 constituent subframes. Since the frequency range
was resolved in a 1024-point DFT, a direct approach to
representing each candidate position required the use of 9
bits. To save bit quota, we encoded the first candidate
as an absolute location in the frame and the remaining
candidates as differences from the previous one. To elab-
orate further, these 13 candidates were differentially en-
coded with 78 bits in accordance with the bit allocation
(5,6,6,6,6,6,6,6,6,6,6,6,7). Next, we employed an enumera-
tive source coding technique [6] to encode the 7 best fre-
quencies once per subframe. Since the number of different
possibilities involved in choosing 7 out of 13 candidates is
given by C13, the minimum number of bits required to en-
code all possible patterns within a subframe is 11.

To quantize the amplitudes an adaptive quantizer whose
levels were adjusted to the maximum absolute value within
a frame was used. This maximum absolute value, denoted
by rmaz, was logrithmically encoded in 9 bits. The individ-
ual amplitudes were then scaled and uniformly quantized
using varying degrees of bit resolution. The aim was to ob-
tain alarger margin between the coder generated noise level
and the audibility threshold of such artifacts. Following
the work described in [7], we first implemented a percep-
tual model to obtain the input parameters (mask-to-noise
ratios) required to optimize the bit-rate adjustment proce-
dure. The calculation started with a precise spectral anal-
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ysis on 1024 windowed audio samples to generate its mag-
nitude spectrum. The spectral lines were then examined to
discriminate between tonelike and noiselike maskers by tak-
ing the spectral flatness measure as an indicator of tonality.
Using rules known from psychoacoustics, the spread Bark
spectrum was then calculated dependent on frequency po-
sition, loudness level, and the nature of tonality. Finally,
we obtained a vector of 24 masking thresholds, denoted by
{mask(b),b=1,2,...,24}, from the spread Bark spectrum
and from the absolute threshold in quiet.

Constrained to producing a constant bit-rate for each
frame, we proposed a dynamic bit allocation routine based
on the MNR (mask-to-noise ratio) perceptual measure,
which is defined as the ratio of the estimated masking
threshold to actual coding noise. The primary goal was
to minimize the total mask-to-noise ratio over each sub-
frame by increasing the quantizer resolution for percep-
tually more important sinusoids until the number of bits
available was exhausted. Let us assume that ¢? is the vari-
ance of the i-th filtered sinusoidal component, denoted by
si(n) = ei(n) * h(n), and let o2, denote the quantization
noise variance associated with R;-bit uniform quantization
of the signal s;(n). The proposed bit allocation routine is
an iterative procedure, where in each iteration the follow-
ing steps proceed until all 35 bits have been allocated in
coding the amplitudes.

(1) Calculate the error variances of all the sinusoids, 1 <

1<,

‘73.- = eo?[22R (13)
where € is the corresponding quantizer performance
factor.

(2) Calculate the MNR. of all the sinusoids, 1 < ¢ < 7,
MNR(i) = mask(b) — lﬂlogloa'fi, wly < w; < why, (14)

where wly and why denote, respectively, the lower and
the upper boundaries of the dth critical band.
(3) Assign one additional bit to the particular sinusoid

with the minimum MNR.
Once the final bit allocation was determined, the individual
amplitudes were then uniformly quantized in the range of
[0, Pmac] with different quantizer resolutions. As regards
the phases, each sine wave was equally allocated 5 bits and
uniformly quantized in the range of 0 to 2.

IV. EXPERIMENTAL RESULTS

Computer simulations were conducted to examine the
suitability of MNR-adapted bit allocation for use with the
multisinusoid excited LPC coder. The monophonic au-
dio database for these studies consisted of electrified in-
strumental music, an oboe plus a piano, and an orches-
tra. Each music signal is 10 seconds in duration and sam-
pled at 32 kHz. Though better performance can always
be obtained by increasing the number of sine waves, the
paramters L = 13 and M = 7 were empirically chosen as
the best compromise between coding gain and implemen-
tational complexity.
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Table II shows the comparative performance results for
72 kb/s audio coding in conjunction with a multipulse ex-
cited model (MPLPC) and a multisinusoid excited model
(MSLPC). The performance is evaluated in terms of SNR,
segmental SNR (SNRSEG), and Bark spectral distortion
(BSD). The BSD measure has been shown to correlate more
closely with the results of human preference tests than
those obtained by other conventional objective measures
[8]. As the table shows, the MSLPC coder yielded sub-
stantial improvement over the MPLPC coder for all test
samples. Our informal listening tests also confirmed the
superior quality of the MSLPC output. Among the rea-
sons for success, we found that sinusoidal excitation repre-
sentation can more closely match the intrinsic natures of
actual residual spectra. Compared to the MPLPC case, an
MSLPC coder has one additional advantage of using MNR-
adapted bit allocation to increase quantizer resolution for
psychoacoustically important sinusoidal components.

V. CONCLUSIONS

In this paper, we first emphasized the importance of
matching LPC excitation sources to the pulselike natures
of residual spectra. This was done by using a sum of sine
waves to approximate LPC excitation waveforms rather
than using spectrally flat excitation signals. Furthermore,
it was found that sinusoidal excitation representation pro-
vides an ideal framework for incorporating masking thresh-
olds in the design of noise spectral shaping. Experimental
results concluded that the use of sinusoidal excitation rep-
resentation combined with a perception-based quantization
allows the implementation of an LPC audio coder that de-
livers high quality at the rate of 72 kb/s.
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Table 1: Bit allocation for MSLPC coders at 72 kb/s

Amplitudes 35x6

Phases 35x6

Frequencies 11 x 6
Frequency Candidates 78

Maximum Amplitude 9

LPC Parameters 24

Bit Allocation Information 13 x 6
Total bits per frame 675

Table 2: SNR/SNRSEG/BSD performances of MPLPC and
MSLPC coders at 72 kb/s

Coder

Music

MPLPC MSLPC

Electric Instrument| 24.52 /24.71/21.00 | 24.38/26.61/20.73

Oboe + Piano 23.89/2447/72.14 | 24.55/27.92/6.98

Orchestra 24.23/24.12/119.4 124.82/26.43/149.10

Perceptual Mask MNR-Adapted
Model Bit Allocation ’
“5,0,,0,
L’
| i 4+ o~ —| Synthesis Filter Sinusoidal Excitation 2
A“di'? H@) = 1M1 ai2”) o(n)= Znoostwal+6,)]
/

Fig. 1. Block diagram of the multisinusoid-excited LPC

encoder
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