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ABSTRACT

A method for tracking the positional estimates of multiple

talkers in the operating region of an acoustic microphone
array is presented. Initial talker location estimates are pro-
vided by a time-delay-based localization algorithm. These
raw estimates are spatially smoothed by a Kalman filter de-
rived from a set of potential source motion models. Data
association techniques based on the estimate clusterings and
source trajectories are incorporated to match location ob-
servations with individual talkers. Experimental results are
presented for array recorded data using multiple talkers in
a variety of scenarios.

1. INTRODUCTION

The ultimate goal of this research is to passively track a
number of talkers without the need for human operator
control. The desired system should be capable of providing
high-quality audio and visual data as sources move within
a designated enclosure.

While a number of environmental cues are available for
localizing, identifying, and tracking the sources of interest,
this paper examines the use of acoustic information only
for these applications. Arrays of microphones have been
shown to be capable of accurately locating speech sources
in a number of scenarios [1, 2, 3, 4, 5] while requiring sig-
nificantly fewer computational resources in comparison to
image-based systems. Furthermore, the microphone array
can also be used to enhance the audio signals through the
use of near-field beamforming.

The tracking methods detailed here take as their input
the positional hypotheses provided from the time-delay-
based location estimator addressed in [1]. This localization
algorithm provides single-source position estimates at regu-
lar time intervals. During periods of constant, single-source
speech activity, the rate of positional estimates is quite high
(10-30 estimates/sec) using the Brown Megamike I system
for 16 microphones [6]. During intervals of silence or di-
rect, multiple talker overlap, no location observations are
provided. However, the short independent analysis window
(20-30 ms) and detection criteria associated with the algo-
rithm make it effective for localizing moving sources and for
situations where multiple talkers are active. In the former
case, the positional observations follow the source motion.
In the latter, the observations jump from one talker to an-
other many times a second as one source dominates.

The algorithms presented in this paper concentrate on
improving the quality of the positional estimates given a
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sequence of noise-corrupted location estimates from a set
of multiple and, possibly, moving talkers. In such a sce-
nario, the tracker must perform two main functions. The
first is spatial filtering of the noise-corrupted location esti-
mates. By employing a simple Newtonian motion model,
these positional measurements may be smoothed via an ap-
propriate Kalman filter. The motion of The second tracker
function involves assigning the observations to their appro-
priate sources. In conjunction with the Kalman filter, data-
association techniques can be used to assign measurements
to individual talkers. Since the Kalman filter estimates the
position of the talker within a calculable degree of certainty,
the estimate can be used to combine each new measurement
with an existing talker’s past measurements. These distinct
functions will be addressed in Sections 2 and 3 while some
experimental results will follow in Section 4.

2. SPATIAL FILTERING

2.1. Kalman Filtering

The motion of a specified talker is modeled by the state
difference equation:

£(k+ 1) = F¢(k) + Gu(k) (1)
The state, £(k), is a 6-element vector consisting of some
source’s 3-dimensional Cartesian position and velocity:

£(k) = [o(k) y(k) =(k) (k) y(k) 2(k)]" (2)

It is evaluated at discrete iterations k which represent the
continious source motion sampled at regular intervals 7.
In the experiments that follow, T varies over the range
20 — 150ms. A 3-element process noise vector, v(k) =
[v=(k) vy(k) v2(k)]T, is used to model the non-zero accel-
eration of the source motion. It is composed of uncorre-
lated, zero-mean random variables with equal variance g°
(ie. Ev(k)w(k)T] = Q = ¢*Is.) The transition matrix, F,
and the gain matrix, G, are defined by:

N = G

The 3-dimensional source observation at the k*" iteration,
9(k), is modeled as the true source position corrupted by
measurement noise, w(k):

9(k) = H{(k) + w(k) (4)
The covariance of the measurement noise, R(k), is calcu-
lated as a function of the source location, sensor positions,
and background noise conditions [7]. The measurement ma-
trix is given by H=[ I3 | 05 ]

371



Given these state and observation difference equations,
(1) and (4), the corresponding Kalman filter difference
equations are summarized below. Detailed derivations of
these equations can be found in a number of sources; [8] is
typical.

One cycle of the Kalman filter is executed as follows:

Step 1: Prediction Equations- Given k observations
the predicted state covariance at the k + 1 iteration
is calculated from:

P(k + 1jk) = FP(k|k)F’ + Q (5)

while the predicted measurement covariance is found
from:

S(k + 1) = HP(k + 1}k)H' + R(k) (6)

The updated state covariance for (k + 1)th iteration is
calculated with:

P(k+1/k+1) = P(k+1jk)-W(k+1)S(k+1)W'(k+1)
7

where W(k + 1) is the filter gain given by: ™
Wk +1) =Pk +1k)H (k+1D)[SE+ D] (8)

Step 2: Gain Equations- The state prediction is found
from:
£(k + 1|k) = FE(k|k) + Gu(k) 9)

and the measurement prediction is given by:
B(k + 1|k) = Hé(k + 1[k) (10)

The innovation of the filters, the difference between the
k+1 observation 9(k + 1) and measurement prediction

9(k + 1]k), is:
v(k +1) = 9(k +1) - d(k + 1|k) (11)

which is used to calculate the state estimate at the k+1
iteration:

Ek+1lk+1) =é(k+1|k) + W(k + vk +1) (12)

The Kalman-filter is run by successively repeating steps 1
and 2 at each time iteration. Initialization of the filter is ac-
complished by the method of two-point differentiating from
the initial measurements.

2.2. Interacting Multiple Model

Talkers using microphone arrays in typical environments
can be stationary or wander about. Thus a single model,
e.g., one for a stationary talker, for the kalman filter would
not be ideal for all situations. Rather, a multiple model
system should be better [9], and thus two models are used,
a static model and a one for constant velocity. Both mod-
els should be statistical consistent within their respective
realms of motion.

The variance of the process noise, g2, may be scaled to

reflect the accuracy of the constant-velocity model. For sit-
nations involving static talkers or sources moving at near
constant velocity, a small process-noise variance is appro-
priate. When the source motion is “jerky” or erratic, a large
variance is required to allow the Kalman tracker to accu-
rately follow the true source motion. A mismatch between
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the model acceleration variance and the true source acceler-
ation can result in large disparities between the tracked lo-
cation and the source’s actual position. Unlike many track-
ing scenarios, the motion of a talker is subject to a wide vari-
ation in acceleration. In practice, choosing a time-invariant
¢° value poses a difficult empirical problem. First, liberal
overestimation of ¢ will allow the tracker to follow changes
in motion, but will hinder the filter’s ability to smooth the
data. A second possibility would be to employ an adaptive
process variance term. However the variation in accelera-
tion may be extremely brief and such an adaptation with
a one-step Kalman filter would not be possible. The Inter-
acting Motion Model (IMM) is to maintain multiple motion
models and choose between them based upon the observed
data.

The IMM algorithm operates with two or more Kalman
filters running in parallel. Each of these filters is derived
from the motion model in (1) with a specific process noise
variance. The algorithm transitions between filters accord-
ing to a Markov chain in an effort to match the observed po-
sitional observations to the most appropriate motion model.
Details of the procedure are given in [9].

3. DATA ASSOCIATION

Given multiple, possibly moving, talkers in an environment,
the goal of data association is to relate isolated positional
observations to a specific source. This study does not make
a final decision as to which talker is most important at
any single time. Instead it is assumed that the end user
can select which talker is of most interest. While individ-
ual sources are spatially filtered via the Kalman filtering
methods addressed in the previous section, each location
estimate must first be associated with a particular source
prior to the application of any spatial filtering. This is ac-
complished through the use of acceptance regions [8]. The
acceptance region accounts for the measurement noise vari-
ance of the target and the possible motion of the target. A
Kalman filter following a talker is called a “track”. Each
track or potential track is then placed into a “track table”
where it can be sorted based on historical significance. If
the Kalman filter has been following a talker for a few iter-
ations then it is deemed historically significant.

The elements of the basic data association algorithm are
outlined below.

1. Track initialization: A measurement that cannot
be associated with any other tracks or other mea-
surements is called an initiator. After the initializa-
tion, an acceptance region is set up for the second
scan/iteration. If the next measurement falls within
this acceptance region, a potential track is set up. The
two measurements are then considered associated. The
size of the acceptance region is a design parameter.
The two associated measurements are used to initialize
a Kalman-filter. The states and covariance associated
with this track are stored within a track table. If an
initiator is not associated with a measurement on the
subsequent iteration, the potential track is dropped.

2. Track continue: Track acceptance regions are set up
based on the predicted position when a Kalman-filter is
running. If a new measurement falls within this accep-
tance region, then it used by the Kalman-filter. If no
measurement falls within this acceptance region, then
the predicted position is used as the measurement for
the Kalman-filter. The output state and covariances of
the Kalman-filter are then restored in the track table.
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3. Track drop: If a track does not have any measure-

ments that fall within its acceptance region for a num-
ber of iterations, then the track is dropped. We define
this number, Ny, as the number of iterations until the
track is dropped. Ny is a user designed parameter and
is based on how long the designer wants the track to
continue when no measurements are present. For these
experiments the tracks were held for about 1 sec or
30-50 iterations.

4. EXPERIMENTS

Recordings were made of talkers in a 4m x 7m conference
room with a large table in the center, a carpeted floor, and
an acoustically tiled ceiling at a height of 2.75m. Two eight-
microphone, sub-arrays were positioned at standing height,
2m apart along one end of the conference table. Acous-
tic data from the 16 microphones was sampled at 20 kHz
and positional estimates were found using the localization
scheme detailed in [1]. One should note that for each frame,
the locator yields a potential source location, if multiple
sources are talking only the strongest source location is re-
turned by the locator-estimator.

The first experiment involved a single, moving talker.
Figure 1 displays an overhead view of the raw positional
estimates for a talker walking toward one of the sub-arrays
and the Kalman filtered version of this same data. For these
experiments, the Interacting Multiple Model algorithm in-
corporated three potential source motion models: a static
talker (¢° = 0), and low and moderate acceleration talk-
ers. The results illustrates the ability of the multiple-model
Kalman filter to effectively smooth the positional measure-
ments.

Figure 2 presents the data associating algorithm being
run in a two-talker scenario. Here one talker is in motion
while the other is stationary. The algorithm was able to
assign each location estimate to a specific talker and then
effectively smooth each track. Note the data association
method’s ability to reject erroneous measurements.

The final experiment considered four people sitting across
from each other at a conference table. The conversation was
a “round robin” of the speech spoken with some simultane-
ously. Talker one began with a brief 3-4 second statement
followed by talker two continuing clockwise around the ta-
ble, and so on. The entire conversation lasted 60 seconds.
The raw positional observations and the results of running
this data through the data association and IMM algorithm
are presented in Figure 3

5. CONCLUSIONS

The Interacting Multiple model estimator is a viable tech-
nique for smoothing raw location estimates. The multiple-
motion model offers a clear advantage as it effectively
adapts to rapid changes in talker movement. This study
was limited to only three motion models. Additional motion
models as well as a more sophisticated source acceleration
model may be straightforwardly incorporated incorporated
into the IMM algorithm should performance considerations
demand it. The data association methods described here
were seen to be effective at distinguishing multiple talkers
speaking simultaneously or in succession.

This work represents only the first step in constructing

an automatic talker tracking system. One area of study is
to extend the data association algorithm to include talker
identification /characterization information. A statistical-
modeling technique may be applied to the content of the
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Figure 1. Overhead plots of the positional measurements for a
single talker moving toward a sub-array before (top) and after
(bottom) Kalman filtering.

source signal as in [10, 11]. Once the characterization of a
talker has been developed, it will provide the data associator
with additional information on which to make a decision.
For example, a camera or the acoustic array could be steered
to “the president”.

The methods discussed here have focussed entirely on
acoustic data. A hybrid-system which fused both sound
and image data could have many potential advantages. For
instance, using location estimates derived from the micro-
phone signals to limit the search region of a visual-based
tracking system could provide for significant improvements
in functionality and computational efficiency. Also, the sys-
tem would be eflective when the talkers are quiet.
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and Kalman filtering.
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