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ABSTRACT

In this paper we are concerned with signal processing of
acoustic signals resulting from active transmissions by
high frequency sonar systems. These signals consist of
structured interference related to propagation effects in
the media, reflections from targets, and measurement
noise. The methods herein model these signals as repli-
cas of the transmitted signal, scaled in amplitude and
time, and delayed. Furthermore, we are interested in
signals with ‘simple’ time frequency profiles, such as
linear frequency modulated (LFM) or hyperbolic fre-
quency modulated (HFM) signals. These signals have
the underlying property that the principle ridge of the
autoambiguity function crosses the mid point of the
time-frequency plane in a smooth manner, with a sim-
ple relationship between time delay and time scaling
(frequency shifting). This paper describes a method
for estimating the delay and time scale of signal com-
ponents using fast maximum likelihood, while preserv-
ing the high resolution property of related time delay
estimation techniques.

1. INTRODUCTION

This paper will be organized as follows. First, we will
present a parameter estimation method which will si-
multaneously estimate the signal and interference com-
ponents of a signal. This method will be shown to be an
extension of the Fast Maximum Likelihood method of
parameter estimation, allowing for more accurate anal-
ysis of closely spaced signal or interference components.
Next, simulation results will be presented, to demon-
strate the features of these methods.

1.1. Signal Model

The returned signal will be assumed to be of the form
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= rg+zr+n. (1)

The signal xg, and the interference z;, are both mod-
eled as linear combinations of time delayed (7;) and
time scaled (c;) replicas of the transmit, s. The signal
and interference amplitudes, delays, and time scaling
factors will be considered to be deterministic but un-
known parameters. As is usual for sonar signal pro-
cessing systems, these signals will complex valued in
general, being derived from real-valued pressure sig-
nals which have been shifted in frequency and down-
sampled. The noise will therefore be assumed to be
complex Gaussian, i.e.

n~N(0,(62/2)I) + N (0,(0%/2)I) . (2)

2. DISCUSSION

For the case of the measurement noise of equation 2, the
maximum likelihood estimate of the signal parameters
can be made by maximizing the compressed likelihood
function (CLF)

il

t« HHH) 'Hf ¢
[Przi® (3)

searching over the dimension 2(Kg + Kj) space of the
vector model parameters ¢ and 7. A complete treat-
ment of the topic is offered in reference [1]. Here, H
is the combined signal and interference model matrix,
formed by stacking together in columns time delayed
and scaled transmit replicas.
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H = [s(cat — 1) ... s(ckst — Tks)
. S(ergr kit — TR+ K ) (4)

Since both the signal and the interference are modeled
in exactly the same way, it will not be necessary to dis-
tinguish the components, and we will refer to the model
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matrix as simply H. The problem of maximizing the
CLF has been treated extensively in the literature in
many guises, see for example [1, 2]. The fundamental
problem all have in common is to estimate the param-
eters of a new component

h,; = S(Cit - Ti) s (5)

having estimated i—1 other components. To illuminate
the problem, assume a new component h; is sought, and
the previous i — 1 components are available in a matrix
H«,;- 1.

H; = [H;-1 | hi] (6)

It is not hard to show that the CLF can be rewritten
as
Lag = [Prc_.z]” + [Prel (7)

where the projection involving the new component h;
has apparently been modified by substituting h;,

hi=P. h;. (8)
Hi-
Since the first term in this relationship does not depend
on the new component h;, the maximization of L jf can
be accomplished by maximizing the second term alone.
After rewriting, this can be shown to be equivalent to
maximizing
ht
L=|=* (1" - PHi—lx)Hz . (9)
Bl

Equation 9 has the following interpretation. To maxi-
mize the Compressed Likelihood Function Lg¢ over the
complete set of model vectors [H;—; | hj], first project
the data onto the subspace spanned by the known com-
ponents, and find the residual x — Py, _,z. Next, take
the inner product of the residual with the modified
matched filter ht/|R;|, searching over the parameters
7; and ¢;, where h; = s(c;t — 7;). The it" component
will be h; = s(é — 7), where é and 7 maximize L.

Our method of estimation draws on two recently
published results, the method of Fast Maximum Like-
lihood Estimation [1], and the method of Complex to
Real Least Squares Time Delay Estimation, ‘CRALS’ [3,
4].

2.1. Fast Maximum Likelihood Estimation

In Fast Maximum Likelihood Estimation, the ¢; = 0
line in the c-7 plane is first searched, followed by a
second search along the known ambiguity ridge on the
plane. To visualize this, imagine a signal such as fig-
ure 1 has been transmitted, and it is known that the
time scaling ¢ simply shifts the return vertically. The
projection of delayed versions of the transmit signal
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along the ¢ = 1 axis will match up well with the return,
just at the wrong time delay. The ridges of the delayed
transmit and the return will however line up perfectly.
If it is known how to shift the delay and time scaling
of the replica along this ridge, the correct maximum
can be found, without resorting to a two dimensional
search. The Fast Maximum Likelihood procedure does
just this, evaluating equation 9 along the ¢; = 1 axis,
and then the ambiguity ridge, building up the model
matrix H one vector at a time.
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Figure 1: Wideband Auto Ambiguity Function of an
FM Transmit

2.2. Complex to Real Least Squares Time De-
lay Estimation

The method of Complex to Real Least Squares time
delay estimation, ‘CRALS’ [3, 4], solves a similar prob-
lem, but focuses on a different aspect of performance.
In this method, the signal model is restricted to the
¢; = 1 case, which indicates a one dimensional search,
component by component, in the spirit of equations 8
and 9. CRALS has two enhanced features which dis-
tinguish it from other maximum likelihood methods.
First, the problem of overlapping signal components is
addressed, and second, a means for constraining the
amplitudes of the signal components to be real-valued
is incorporated. We will be interested in the first fea-
ture, which can resolve signal components closely spaced
on the time time-scale plane.

Referring to equation 9, the search for the maxi-
mum of L by substituting h; = s(¢t — 7;) will by design
‘run over’ the i —1 components already estimated, each
producing a singularity in L. This is because the pro-
jection of h; onto the complement of H;_; will yield
h; ~ 0. Conversely, in regions where h; is orthogonal
to the other components, h; = hi, and the search re-
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duces to a matched filter search of the signal residual.
In the singular regions, CRALS substitutes the vector

3}

hi = =—hs 10
hl 67’1; * ( )
for h;. In (3] it is shown that the projection onto
[H;—1 | hi] is approximately equal to the projection
onto [H;—1 | hs] over a small range of 7. This range
corresponds to the range over which a Taylor series ex-

pansion in 7, truncated to the first two terms, is valid.

2.3. Summary of the Method

We are researching the ramifications of doing Fast Max-
imum Likelihood searches of L, that is searches along
known ambiguity ridges, starting from a set of delay
estimates found by the CRALS algorithm. The signals
we will be interested in are signals with components
shifted only moderately off the reference Doppler time
scale axis. This will be true for nearly static systems
making underwater parameter measurements in calm
seas, or moving platforms interrogating low Doppler
targets. More radical cases would run the risk of shift-
ing signal components completely off the reference axis,
defeating the method.

We will call this method of parameter estimation
the CRALS-FML Hybrid method, summarized as fol-
lows

1. Do a CRALS estimation of signal component de-
lay, assuming that all components are centered at
a known Doppler time scaling, usually ¢; = 1.

2. For signal components isolated in delay from neigh-

boring components by more than half an autoam-
biguity width, proceed with Fast Maximum Like-
lihood estimation of that component’s Doppler
time scale.

3. For groupings of two or more signal components,
do a modified Fast Maximum Likelihood estima-
tion of component Doppler time scale as follows.

(a) Individually constrain each component’s time

delay and Doppler time scale to follow its
known ambiguity ridge.

(b) Do a dimension K maximization of the CLF
along the K ridges, where K is the number
of components grouped together.

4. Perform final maximization of L ¢ using gradient
search, etc.

Our analysis and evaluation of performance will focus
on the initialization stage (steps 1 through 3), since all
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of the methods presume a final optimization stage. A
simulation therefore will be considered successful if the
components are resolved to the approximate location
on the time delay - time scale plane. Simple gradient
methods will then converge on the proper estimate.

3. SIMULATION RESULTS

To illustrate the method, a simple simulation was writ-
ten with three replicas of an FM signal placed in a
length N = 256 data record. The FM signals were lin-
ear FM, 50 samples long, cosine weighted at the ends,
with a digital frequency ranging from —0.2 < f < 40.2.
The auto ambiguity ridge of this signal is roughly 4
samples wide, and it was presumed to have been gen-
erated from a downsampling operation such that time
scalings of 0.95 < ¢ < 1.05 spanned the range of digi-
tal frequencies in the system. The parameters selected
were such that a time scaling of ¢ = 1.0025, a compres-
sion, would advance the apparent zero crossing of the
signal by 7 = 1.32 samples. The noise power is —12dB,
and the signals were amplitude 0, 6, and 9.5dB pro-
ceeding from the first to the last.
Three cases were run,

case I fully orthogonal case

case II pictured in figure 2, has the second two com-
ponents at an identical delay of 80 samples, but
with different time scalings, still approximately
orthogonal. The ¢; = 1 crossings of the sec-
ond two components are approximately 8 samples
apart.

case III is the most difficult case, with the ¢; = 1
crossings within two samples of each other for
the second two components.

fml results
(21.24 , 1.0025)
(80.09 , 1.0075)
(139.90 , 0.9925)

case | actuals
(20,1)

I (80, 1.0075)
(140 , 0.9925)

(20, 1) (19.92, 1)
I | (80,1.0075) | (79.89,1.0075)
(80, 0.9925) | (81.30, 0.995)
(20 ,0.9925) | (19.98 , 0.9925)
II | (80, 1) =)

(82,1.0075) | (83.91,1.01)

Table 1: Simulation Results of Estimation of Signal
Parameters by Fast Maximum Likelihood. Entries are
(delay in samples, Doppler time scale)
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hybrid results
(21.30 , 1.0025)
(80.04 , 1.0075)
(139.90 , 0.9925)

case | actuals

(20, 1)

I (80, 1.0075)
(140 , 0.9925)

20, 1) (19.96 , 1)
II | (80, 1.0075) | (78.47, 1.0050)
(80 ,0.9925) | (79.87 , 0.9925)
(20, 0.9925) | (19.92 , 0.9925)
III | (80, 1) (80.04 , 1.0025)
(82, 1.0075) | (83.86,1.01)

Table 2: Simulation Results of Estimation of Signal
Parameters by Hybrid Method. Entries are (delay in
samples, Doppler time scale)

The results for these representative cases, displayed
in tables 1, and 2, show that both methods perform
well when the signals are approximately orthogonal.
As the components move closer, and start to overlap
in time, both methods can still resolve the signals, as
long as the ¢; = 1 crossings of the ambiguity ridges are
separated. When the ¢; = 1 crossings are within 1/2 of
an autoambiguity ridge of each other, the signals are
very much non-orthogonal, and FML can have trouble
resolving them. In table 1, case III, estimation of the
second component fails, giving a low amplitude false
component in the noise (not shown). CRALS however
does pickup two signals in the region, which are further
resolved when the FML stage of the Hybrid algorithm
is executed.
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Figure 2: Wideband Cross Ambiguity Function of Sim-
ulated Case II
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4. SUMMARY

Presented is a hybrid method of parameter estimation,
which forces the Fast Maximum Likelihood algorithm
to start with the high resolution time delay estimates
from CRALS. The FML algorithm can use these de-
lay estimates, but must be modified for components
extremely closely spaced in delay. For a subset of K
closely spaced components, a brute force maximiza-
tion of L s would require a dimension 2K search, FML
would require K one dimensional searches, and the Hy-
brid method requires a dimension K search. In other
situations FML, CRALS, and the Hybrid method are
identical. Research will continue to make a more thor-
ough examination of these claims. In particular, perfor-
mance bounds are sought for CRALS which deal with
delay estimation for mis-matched signals, in situations
such as these.
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