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ABSTRACT

A noise removal algorithm based on short-time
Wiener filtering is described. An analysis of the per-
formance of the filter in terms of processing gain,
mean square error, and signal distortion is presented.
A generalized form of the filter is also discussed and
results of applying the algorithm to some typical un-
derwater acoustic data are presented.

1. INTRODUCTION

Data from passive sonar is generally accompanied by
ambient noise arising from shipping traffic, marine
life, wave motion, moving and cracking ice (in the
Arctic), and numerous other sources. The statistical
properties of the noise are variable, even direction-
dependent, and have been the source of many studies
and analyses, e.g. [1, 2, 3]. Noise hampers sonar
data collection and related processing of the data to
extract information since many of the signals of in-
terest are of short duration and of relatively low en-
ergy. This paper describes an algorithm based on the
Wiener filter and a generalization of the Wiener filter
and illustrates how the algorithm can be applied to
remove additive noise and therefore enhance further
processing of the data.

2. BASIC ALGORITHM

Since for low level signals the ocean behaves like a
linear transmission medium, a significant component
of the noise encountered in data collection is additive.
The situation can be modeled as

z(n) = s(n) + n(r) 0

where z(n) is the received noise-corrupted signal, s(n)
is the uncorrupted signal, and 5(n) is the additive
noise. If the signal a(n) is treated as a random pro-
cess, then considering the above generation conditions
for the noise, the signal and noise are independent.
Further, since the noise has zero mean, the relation
between the correlation functions is also additive. Al-
though the signal is not usually stationary over a long
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observation time, for a short time interval we can

write

Ro(l) = R.(1) + Ry(1) (2)
The estimate of the signal is a classical problem in
statistical signal processing [4], and the vector of op-
timal FIR (Wiener) filter coefficients h is the solution
to the Wiener-Hopf equation

R;h=r, (3)

where R, is the correlation matrix for the observed
noisy signal, and r, is a vector of terms from the cor-
relation function R,(l) of the uncorrupted signal.

Since none of the correlation functions is known a
priori, they must be estimated from the data at hand.
Since only 2(n) is observed, however, only R,(l) can
be estimated directly. Nevertheless the nature of the
problem provides a way to compute the needed statis-
tics. Since the signal is very short (on the order of
seconds or milliseconds) compared to the time over
which the noise statistics are likely to change, an es-
timate for Ry(l) can be made from the received data
prior to the onset of s(n). This estimate can in the-
ory be subtracted from R.(l) to produce an estimate
of R,(1). Thus, in principle, all of the quantities to
perform the optimal filtering over a short time inter-
val can be computed, and this can be repeated over
successive blocks of data.

The estimate of R,(I) by subtraction of the esti-
mated correlation functions is not well formed because
there is no guarantee that such an estimate will be
positive (semi)definite. This problem is mitigated if
the noise is white because the procedure then involves
subtraction of only a single parameter, the white noise
variance, from the estimated R, at lag zero. In fact,
if the subtraction is done in the spectral domain the
positive definite property can be tested as part of the
procedure. Further, the estimate of this single pa-
rameter has lower variance than the estimate of the
correlation function as a whole. Therefore before any
further steps, the entire data set is processed by a
linear predictive filter that whitens the noise. After
noise removal, the data is processed by the inverse
filter as shown in Fig. 1.
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Figure 1. Prewhitening in short time Wiener
fllter algorithm.

The prewhitened data is segmented into blocks
where an estimate of the local correlation function
R.(1) is formed for each segment. Optimal filtering
is then performed for each segment using a Wiener
filter designed for the segment and the data is pro-
cessed by the inverse filter to undo the effects of the
prewhitening. In performing the Wiener filtering, the
data is processed both forward and backward through
the optimal filter which gives an approximation to a
symmetric noncausal Wiener filter of approximately
twice the length. Since the optimal filters are differ-
ent for each block, discontinuities at the boundaries
can arise. The effect of such discontinuities can be
minimiged by using points from the adjacent segment
to filter the early points of the current segment. In the
algorithm, the data is actually processed twice. The
data is first segmented and filtered and the result-
ing frames are weighted by a triangular window (see

First pass
filtering and
weighting

Fig. 2). The data is then resegmented using frames
Second pass

PPN

Figure 2. Overlap averaging technique used in
noise removal.

shifted by half of the frame length, filtered again and
weighted by a triangular window. The two weighted
sets of data are then added to produce the final re-
sult and minimize any effects that may occur at the
boundaries between frames.

3. WIENER FILTER PERFORMANCE

While the Wiener filter produces the best mean-
square estimate of the signal, other criteria may also
be important in processing acoustic data. Figure 3
depicts the linear filtering of a signal in additive noise
and indicates the two portions of the output: y,(n)
the result of processing the signal alone, and y,(n)
the part due to processing the noise alone, which can
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x(n)=s(n)+Nn(n) y(m)=y:(n)+y«(n)
1 H@) g
8(n)=y(n)

Figure 3. Definition of signals in optimal fil-
tering.

be thought of as the residual noise left after pro-
cessing. If the input and output signal-to-noise ra-
tio (SNR) are defined by E {a’(n)} /E {n’(n)} and
E {yf(n)} /E {y:(n)} then the filter Processing Gain
is defined as the ratio of output SNR to input SNR in
dB. A measure of signal distortion introduced by the
filter can be defined as

SD =1

_ _(E{s(n)u(m)})’ @
E{#(n)} - E{(m)]

A normaligzed form of mean-square error will be used
which is defined as

E {(s(n) — y(n))’}

MSE = —"F{am) )

Figure 4 shows the performance of the FIR Wiener fil-
ter for a signal with exponential correlation function
R, ()= a2al!! in white noise as a function of the cor-
relation parameter a. Note that as the correlation in-
creases, MSE decreases and processing gain increases
up to a finite value corresponding to finite time inte-
gration. Signal distortion, on the other hand, is gero
for a = 0 (this is the case where the signal is also
white noise and the filter is all-pass) and a = 1 (fi-
nite time integration). In between, distortion reaches
a peak in a region of moderately high correlation cor-
responding many typical signals of interest.

4. ALGORITHM GENERALIZATION

Ephraim and Van Trees [5] have suggested a more
general filter for minimizing the distortion subject to
constraining the residual noise power E {yf,(n)} <
o7. We consider a variation on their approach where
the signal distortion is measured by (4). We can write
(4) as

L (h'rr.)z
SD =1 ZhTR.h (6)
and
E{y3} =h"R;h <0} ]

We can formulate a problem to minimize (6) subject
to the constraint (7) by considering the Lagragian

£=—"r,)+u(h"R,h-C)+A(LTR,h—0?) (8)

where s and A are Lagrange multipliers and C is an
arbitrary constant to be determined. By setting the
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Figure 4. Performance of FIR Wiener fllter
for exponential signal in white noise for filter
length P = 10. (a) Mean Square Error. (b)
Processing Gain. (c¢) Signal Distortion.

gradient of (6) with respect to the filter vector equal
to 0, we have the necessary condition

—2r, +2uR,h + 2AR,h =0 9)

which yields h = (uR, + AR,)"'r,. Since any value
for p results in satisfying the condition hTR,h = C
where C is a constant, we choose p = 1, so when the
noise R, = 0, there is no amplification or attenuation
of the signal, so that

h = (R, +AR,)'r, (10)

Similarly, by substituting the expression (10) into (7)
with the equality and rearranging, we find that the
parameter A satisfies

tr r.rfR,,(R. + Anq)_z = 03 (1])
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Figure 5. Performance of Generalized Wiener
filter for exponential signal in white noise as a
function of parameter A for filter length P = 10.
(a) Mean Square Error. (b)Processing Gain.
(c) Signal Distortion,

At the two extremes, for A = 0 we obtain an all-
pass filter with o2 = af, while for A = 1 we obtain
the Wiener filter which has minimum residual noise
power o2 = o2, Figure 5 shows the performance of
the filter as a function of both the correlation param-
eter a and the parameter A. Note that for values of
A greater than approximately 0.4 the performance of
the filter in terms of processing gain and mean-square
error does not change significanily, while the distor-
tion decreases significantly over this range of values
of A. This implies that the generalized filter with an
appropriately chosen value of A may be more desir-
able in practical applications invelving noise removal
than the standard Wiener filter. Fortunately the al-
gorithm described above can accommodate the gener-
alized filter easily since the generalised filter is merely
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a Wiener filter designed for a white noise variance re-
duced by the factor A.

5. EXPERIMENTAL RESULTS

Figure 6(a) shows an segment of data consisting of

o 0.2 0.4 0eé o.8 1 1.2 1.4 1.6 1.8 2

Figure 6. Application of noise removal algo-
rithm to underwater acoustic data. (a) Origi-
nal noisy data. (b) Data after processing.

a porpoise whistle sound. The data is sampled at
approximately 10 kHz and is considerably degraded
by noise. Figure 6(b) shows the data after noise re-
moval. On the scale shown the noise statistics were
estimated from a segment of the noise about 1000
points (0.1 sec.) in length from the early part of the
data where only noise was assumed to be present. The
FIR filter had a length of P=50 and A was chosen to
be 0.75. The prewhitening filter had a length of 35
points. In the early portion of the data where only
noise is present, the noise power is reduced by approx-
imately 28 dB. The performance of the algorithm in
the signal region is difficult to quantify since the true
underlying signal is unknown. However, listening to
the data before and after noise removal shows a def-
inite improvement due to the processing. Details in
the sound of the signal appear much more clearly.
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6. CONCLUSIONS

An algorithm for noise removal based on optimal fil-
tering of short segments of the data has been devel-
oped. The algorithm was developed for improved pro-
cessing of underwater acoustic data where the noise
is assumed additive and stationary but the underly-
ing signal is highly nonstationary. Noise statistics can
be estimated in a region where only noise is assumed
to be present, but signal statistics have to be derived
from the observation of signal plus noise. A gener-
alizsed version of the algorithm allows one to trade
off signal processing gain and improvements in meas-
square error for lower signal distortion. In application
to data collected in the open ocean there is a notice-
able decrease in the noise background and in aural
listening tests there is an improvement in the ability
to hear details in the underlying signal.
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