AN OPERATION-SAVING VLSI GEOMETRY ENGINE CORE

K. E. Karagianni

G. Diamantakos

V. Paliouras T. Stouraitis

Dept. of Electrical and Computer Engineering,
University of Patras,
Patras, 26500, Greece
karagian@ee.upatras.gr

ABSTRACT

A floating point geometry engine core is introduced

in this paper. @ The proposed core is optimized
for performing the 3-D geometrical transformations,
including the hardware evaluation of sinz and cosz
functions. The architecture exploits the structure
of the transformation matrices, thus reducing the
number of floating point operations required per
transformation. VLSI chip implementation issues for
the specific architecture are also discussed.

1. INTRODUCTION

Computer graphics applications have become very
popular over the last twenty years, covering a wide
range of areas from data or signal representation and
Computer Aided Design to entertainment [1]. To cope
with the large amount of data to be processed and the
strict real-time requirement, the following alternative
hardware platforms may be used:

e general purpose DSPs [2, 3] which offer efficient
performance for small applications, at a low cost,

e general purpose graphics processors [4, 5, 6] which
are usually sophisticated and expensive, with
capabilities that some times are more advanced
than required, and,

e ASICs |[7] ie., application specific graphics
processors that may be optimized in order to suit
the demands of a specific application.

The geometry engine is one of the main parts that
are usually met in a graphics processor. Typical
operations that may be performed by a geometry
engine include geometrical transformations, polygon
shading, clipping, etc.

In this paper, a geometry engine core that
is optimized for performing the 3-D geometrical
transformations is introduced. The proposed
architecture exploits the special structure of the
data that take part in a geometrical transformation,

Copyright 1997 |IEEE

thus leading to an operation-saving implementation.
Furthermore, it is enhanced with a hardware unit for
the evaluation of the trigonometric functions.

The remainder of this paper is organised as
follows: In Section 2 the elementary 3-D geometrical
transformations are described. In Section 3 the
architecture of the proposed geometry engine core is
presented, and in Section 4 VLSI chip implementation
issues are discussed. Finally, the paper is concluded in
Section 5.

2. GEOMETRICAL TRANSFORMATIONS

The model of a graphics object includes a set of points,
each represented by a homogeneous coordinate vector
v=[z y z w]

Each geometrical transformation of a coordinate vec-
tor corresponds to a certain mathematical procedure
and it can be represented as a symbol 7. The trans-
formed coordinate vector is
v =T

The elementary 3-D geometrical transformations are
shown below [1].
The z—axis rotation matrix is

[1 0 00

0 cosf sinf 0

R.(6) = 0 —sin® cos@ 0
0 0 01

L |

The y—axis rotation matrix is

[cos® 0 —sinf 0]

0 1 00

Ry(6) = sinf 0 cos@ 0
i 00 0 1 |

The z—axis rotation matrix is

cosf sinf 0 0]

—ginf cosf 0 O

R.(6) = 0 010
| 0 00 1]

607

Translation:

[1 0 0 o0
0 1 0 0
TDaDypDa)=19 o 1 o
| D. D, D, 1
Scaling:
(S 0 0 0
0 S 0 0
565w S)=19 ¢ s, o
(0 0 0 1

Two successive transformations may be combined
into a new transformation, which gives as a result the
same result with the two transformations.

3. THE PROPOSED ARCHITECTURE

The proposed architecture appears in Fig. 1.

The coordinate vector [z y 2z w]T of a
point to be transformed as well as a sequence of
transformations 77,75, 73, . . . are the input data in the
geometry engine. This assumption makes the system
compatible with the PHIGS standard. The sequence
of transformations iteratively forms a matrix A, called
the transformation matrix, the initial value of which is
the unit matrix. Each transformation 7 in the series,
replaces the matrix A with A/, which is computed as

A=T- A 1)

or

A=AT. 2)

The current value of matrix A is kept into MEM1 of
Fig. 1. Each coordinate input vector is transformed
through matrix A whenever the appropriate instruction
is executed.

The main novelty in the proposed approach, through
which a significant reduction in the number of
operations is achieved, is in the evaluation of (1)
and (2). In particular, products (1) and (2) are not
treated as 4 x 4 general matrix products, which require
64 element-wise multiplications, as in other geometry
engines of the literature (7], but as an update of the
transformation matrix, which requires an operation to
be applied only on some of the elements of the matrix.
More specifically, suppose that the present state of the
matrix A is

a1y a2 a13
A= az1 a2 az3
a31 as2 ass
Q41 Q42 Q43

-0 O O

Copyright 1997 |IEEE

Transform. Computational Load
' mult. | add. | sinz | coszx
SA 9 0
AS 9 0
TA 9 0
AT 0 3
R.A 12 6 yes yes
AR, 16 8 yes | yes
R,A 12 6 yes | yes
AR, 16 8 yes yes
R,A 12 6 yes yes
AR, 16 8 yes | yes

Table I. Operations per transformation.

Then, depending on the transformation to be applied,
one of the following ten cases may appear: A’ = SA,
A'=AS, A =TA A = AT, A' = R, A, A' = AR,,
A" = RyA, A = ARy, A’ = R,A, A’ = AR,. For
example, in the case of the transformation A’ = S 4, it
is

8z°G11 Sz-ai2 Sy-a13 0

S A= 8y Q21 Sy -QA22 8y - 0G23 0
¥

$,°a31 8,-G32 Sy-azz O

aq) aq2 a43 1

which requires 9 multiplications only, instead of the 64
multiplications of the general case. A similar approach
to computing the remainder of the transformations
leads to an operation count reduction. Table I shows
the computational load per transformation, according
to the proposed approach.

Another point to emphasize is that graphics
processors that appear in the literature [8, 9, 5] usually
do not have a dedicated unit for the evaluation of
the trigonometric functions. In most cases, these
trigonometric functions are computed by the CPU of
the graphics processor or the host, through an iterative
algorithm such as series evaluation, in longer time of
course. The proposed geometry engine is supplied with
a hardware unit for the calculation of the trigonometric
functions sinz and cos z, thus achieving fast execution
time for a complete geometrical transformation. The
sinz unit used herein is a slightly modified version of
the architecture proposed by [10], and it was chosen
because of the high speed it offers. The function cosz
is computed as sin (3 — z).

The datapath of the proposed core (Fig. 1) consists
of a unit for the evaluation of the sinz and cosz
functions, a floating point multiplier, a floating point
adder, and three memory units. The memory unit
MEM1 is organized into 12 words of 32 bits each, while
the units MEM2 and MEMS3 store 8 words of 32 bits

608

Instruction | Binary Code |
RESET 0000
RxA 0001
ARx 0010
RyA 0011
ARy 0100
RzA 0101
ARz 0110
SA 0111
AS 1000
TA 1001
AT 1010
TransformV 1011

Table II. The available instructions.

each and are used to store the intermediate results of
the transformation. The address of MEM1 is four bits
long while the addresses of MEM2 and MEMS are three
bits long,

A Finite State Machine (FSM) controls the execution
of each transformation. The FSM initially reads a four-
bit instruction that defines the desired transformation
and subsequently provides the datapath with the
appropriate control waveforms. The instructions and
their binary representation are shown in Table II.

The RESET instruction initializes matrix A, which is
stored in MEM1, to the 4 x 4 unit matrix. Since the
memory READ and memory WRITE cycles require
a precharge phase, instructions that contain such
operations correspond to two states of the FSM. The
TransformV instruction is the only one that produces
output data, while the remaining instructions simply
alter the contents of memory MEM1.

The procedure of computing the rotation transforma-
tion R;A on the described hardware is indicatively de-
scribed. A list of micro-operations that are performed
at each clock cycle is offered. More than one micro-
operations per state are issued to ensure maximum uti-
lization of the available resources.

1. Commence sinz computation. Fetch ag; from

MEML1.

2. Store sinz computation to register K and address
MEM2

3. Commence cosz computation. Store ag;sinf to
MEM2. Fetch as9 from MEM1.

. Address MEM2.
. Store agy sinf to MEM2. Fetch agz from MEMI1.
. Address MEM2.
. Store ag3 sin @ to MEM2. Fetch a3, from MEMI1.

- & ov s

Copyright 1997 |IEEE

8. Store —sin# to K and address MEM?2.

9. Store aj; (—sinf) to MEM2.
MEMI1.

10-13 Similarly compute and store ase(—sin#) and
a33(—sin) to MEM2. Also, in step 13, store cos
to K.

14-25 Fetch from MEM1 the elements a3;, asg, ass, aszi,
@32, a23. Compute the products az; cos#, asz cos b,

a3z cos80, ag cosP, aggcosh, agzcosh and store
them in MEM3.

26-37 New values for the elements a3, ase, azs, asi,
ag2, az3 of A computed by adding the appropriate
partial results stored in MEM2 and MEM3 and
writing the final results to MEM1.

In the case of transformations R:A, R,A, R, A, 37
steps are required in order to alter 6 elements of matrix
A, while in the case of AR, AR, and AR,, 49 steps
are required since 8 elements of A need to be altered.
The evaluation of AS and SA requires 18 steps, while
the evaluation of TA and AT require 30 steps and 6
steps respectively. Finally, the TransformV instruction
requires 30 steps to be completed.

Compared to a CORDIC (3], which is capable
of performing algorithms that include rotations, the
adopted architecture is very much faster because on
a CORDIC, each operation needs time proportional to
the word length to be executed, which is long for an
accuracy equivalent to the one offered by the employed
32-bit floating point number representation.

An alternative arithmetic technique, the Logarithmic
Number System (LNS), has been considered for
implementation. An ATA-based computational
procedure [10] similar to the one used for the
evaluation of sin z was assumed for the implementation
of LNS addition and subtraction. While in some
transformations the particular arithmetic leads to a
significant speed-up over the traditional floating-point
performance, for addition-intensive transformations
the performance is worse. Furthermore, additional
hardware complexity would be imposed. Therefore,
floating point arithmetic was selected. In particular,
the proposed core conforms to the ANSI/IEEE 754/85
standard for single-precision floating point operations.

4. VLSI DESIGN OF THE CORE

A prototype of the proposed architecture has been
designed and simulated at the gate level, using the
ES2 digital standard-cell library for the 0.7 um ecpd07
process technology. The design flow has been based
on VHDL [11}, because such an approach offers design
re-usability, portability to various process technologies,
and a degree of CAD software independence. More

Fetch a3z from

609

specifically, the FSM and the datapath logic were
synthesized and optimized starting from VHDL code,
while the memories in the system have been produced
with the ES2 memory generators.

The designed core comprises approximately 30K
equivalent 2-input gates and occupies an area of
approximately 30 mm2. The memory units required
for the sinz computation require 35 mm?2. It follows
that the complete architecture can be easily integrated
into a single chip.

The circuit has been simulated using the Mentor
Graphics QuickSim. The units that define the delay
of the design are the floating point multiplier, with
a delay of 13.6 nsec, the RAM units with an access
time of 10 nsec and the floating point adder that
demonstrated a delay of 17 nsec. The computation
of the sinz requires 40 nsec but it does not affect the
overall performance severely, as it is used at most once
per transformation. The system clock period is set to
52 nsec, which corresponds to a frequency of 19.2 MHz.

It should be noted that the objective of the
VLSI design was to prove the feasibility of the
proposed computational scheme, and not to design
custom high-performance sub-modules. = However,
if high-performance circuits are adopted, significant
performance improvement can be achieved. For
better overall performance, the architecture can be
modified in order to be pipelined; in this case, a
significant speed-up of the throughput rate would be
achieved. Furthermore, this core can be used as
a Processing Element of a parallel architecture in a
graphics hardware environment.

5. CONCLUSIONS

A geometry engine core, optimized for performing
3-D geometrical transformations is proposed in this
paper. The architecture exploits the structure of
the transformation matrices to reduce the number of
floating point operations required per transformation.
The inclusion of special hardware for the computation
of the sinz (cosz) function, facilitates rotation-
related operations. The fast execution of the
geometrical transformations by the proposed processor,
in combination with the moderate area requirements,
make the core suitable for embedding into a larger
multimedia system or a DSP.

REFERENCES

[1] Foley, Van Dam, Feiner, Hughes, and Phillips,
Introduction to Computer Graphics. Addison -
Wesley, 1994.

[2] Digital Signal Processing Applications Using the
ADSP-2100 Family. Prentice Hall, 1992.

Copyright 1997 IEEE

Input
Vector
| sign
g
v S
[E83
i
38
g=

m Output Vector

Multiplexer () Register

Angle

Figure 1. The proposed architecture.

[3] D. E. Metafas and C. E. Goutis, “A floating-point
advanced CORDIC processor,” Journal of VLSI
Signal Processing, Kluwer Academic Publishers,
Boston, vol. 10, pp. 53-65, 1995,

[4] 82786 Graphics Coprocessor User’s Manual. intel,
1988.

[5] A.Makoto, O. Tatsushi, Y. Hideki, and S. Shigeru,
“3D graphics processor chip set,” IEEE MICRO,
vol. 15, no. 6, pp. 37-45, December 1995.

[6] “Indigo 2 IMPACT breakthrough
graphics,” http://www.honcad.com/honcad_home—
/html/i2graphics.html, November 1996.

[7] J. H. Clark, “The geometry engine: a VLSI ge-
ometry system for graphics,” Computer Graphics,
vol. 16, no. 3, pp. 127-133, July 1982.

8] D. Kirk and D. Voorhies, “The rendering
architecture of the DNI10000VS,” Computer
Graphics, vol. 24, no. 4, pp. 299-307, August 1990.

[9] C. B. Harrell and F. Fouladi, “Graphics rendering
architecture for a high performance desktop
workstation,” SIGGRAPH, pp. 93-99, 1993.

{10 W. F. Wong and E. Goto, “Fast evaluation
of the elementary functions in single precision,”
IEEE Transactions on Computers, vol. 44, no. 3,
pp. 453-457, March 1995.

[11] J. Bergé, A. Fonkoua, S. Maginot, and
J. Rouillard, VHDL Designer’s Reference. Kluwer
Academic Publishers, 1992.

610

