~ AN UPPER BOUND OF THE THROUGHPUT OF MULTIRATE MULTIPROCESSOR
SCHEDULES

Rainer Schoenen

Vojin Zivojnovié

Heinrich Meyr

Institute for Integrated Systems in Signal Processing
Aachen University of Technology
Templergraben 55, 52056-Aachen, Germany
{schoenen,zivojnov,meyr}@ert.rwth-aachen.de
WWW: http://www.iss.rwth-aachen.de/

ABSTRACT

Multirate Dataflow Graphs (MR-DFGs) are used for mo-
delling iterative computations, allowing concurrency and
arbitrary data rates at ports. This model is often used
for signal processing algorithms. For static scheduling the
iteration' period bound represents the final barrier for the
computation speed, the approximation of which is often
the goal of an implementation. For the singlerate case
(SR-DFG), where all rates are one, an explicit bound exists
and is subject of many published papers. This work pre-
sents a bound for the multirate case, which reduces to the
known bound if applied to an SR-DFG. Assumptions made
are a vectorized execution and a blocked schedule that orga-
nizes muitiple iterations inside one period (also called exe-
cution cycle). The influence of characteristic properties in
the multirate case is emphasized and related to terms from
the Petri-Nets theory.

1. INTRODUCTION

Designing multiprocessor implementations of algorithms is
a task where aspects of speed performance are important.
The number of processors involved in parallel processing
has to be determined and the necessary and achievable
throughput? must be considered. It is very useful to have
an overview on parameters that influence the throughput
and see where critical loops exist that might be improved
by changing obvious attributes of the algorithm. The feasi-
bility of an implementation can also be checked by having
a bound to which the requirements can be compared.

We assume that a dataflow [1] description of the algo-
rithm exists, denoted as a dataflow graph (see section 2).
Scheduling means finding an effective mapping of calcula-
tion blocks to processors and time (slots) [2]. For recursive
algorithms the throughput is limited by the graph topo-
logy and the time needed for the processing blocks on hard-
ware {3]. The system designer is interested in determining
how an implementation will perform on a given multipro-
cessor architecture first assuming an infinite number of pro-
cessors. A maximum utilizable number of processors can be
computed as shown later so that early assumptions can be
relaxed. Bottlenecks in the design can soon be detected

lone iteration is a complete task sequence after which the

initial schedule state is reached again
2throughput is measured by iterations/time, the inverse of the
iteration period.

Copyright 1997 |IEEE

and the calculated values help to decide whether to choose
another platform or to spend less processors.

If there are no directed cycles in the underlying graph the
throughput is theoretically unlimited [4]. If directed cycles
are present, the maximum throughput can be calculated by
analyzing all the decomposed fundamental cycles alone [5]
and taking the minimum throughput over all cycles. Alt-
hough the number of cycles in general is not polynomially
bounded in the number of nodes [6], in a great deal of prac-
tical problems the number of cycles can be taken as limi-
ted. The minimum throughput over all cycles has to be
taken because the algorithm can only be scheduled as fast
as the slowest cycle (critical loop). The reduced problem
of one single cycle can be tackled either by converting the
multirate graph to a singlerate DFG {1] by applying the
multirate to singlerate graph transformation, which is ge-
nerally an NP-hard task, and then using known bounds [6]
or by using the presented method on the MR-DFG. So, we
address the problem of having an explicit formula for the
maximum achievable throughput of the MR-DFG without
exploring all the possible schedules of the graph. The ge-
nerally NP-complete complexity of the multiprocessor sche-
duling algorithm and its reduced information about bott-
lenecks are reasons why an explicit approach is preferred.

The paper is organized as follows. After the introduction,
the used terminology is given in Section 2. The related
work is discussed in Section 3. We present our approach in
Section 4, prove its validity in Section 5, and conclude with
an example in Section 6.

2. THE DATAFLOW GRAPH

A MR-DFG is defined as a directed graph G(V, E, I,0,d,T)
containing the set of vertices V and edges E with weights
O(e) and I(e) (the rates) on the output and input side of arc
e respectively. The nodes represent data processing units
while the edges mean data exchange channels. The weights
O(e) and I(e) define how many discrete data tokens are
created and consumed during execution of a node process.
Nodes can only be activated if on each input arc e the num-
ber of tokens ist greater or equal than I(e). The d-vector
denotes the (initial) sample (token,delay) distribution, also
known as marking in the literature on Petri nets [7}. Each
d[e] gives the number of tokens in the exchange buffer asso-
ciated with arc e between nodes. T(v) is the known compu-
tation time of node v. This graph type is equivalent to the

" Petri-Nets class multiple weighted marked graph [8]. The

655

¢-vector is the smallest integer vector of the null-space of
the incidence matrix I' (I'f = 0) and exists iff the graph
is consistent®. It defines how many activations g[v] of each
node v are necessary to complete one iteration, at the end
of which the delay distribution d is the same as at start
time.

Each graph can be decomposed into ¢ fundamental cy-
cles [5]. The example graph (one cycle) in fig. 1 has the
properties d7 = (8,0,0),¢7 = (10,5,4), so e.g. node v,
must be activated 5 times in one iteration. Its input arc
e; has only 8 initial tokens, so only two activations can
actually occur at this time.

Figure 1. Example graph

In the singlerate case the above are the only necessary va-
lues, but here we must define additional terms from the
Petri-Nets theory. Some of them are necessary for the appli-
cation of our bound, others are characteristics of MR-DFGs
and appear in the example.

We now define

WST = ¢ -d 1)

This Weighted Sum of Tokens [7] is a measure of how many
initial values are on cycle I. The subscript ! denotes that
the variable characterizes a particular cycle. The value of
W ST, is invariant during the schedule. The weight vector
[7] is a row I of the fundamental circuit matrix C [7]
(y[e]=weight of arc €). It is necessary for balancing the
node gain [8] (e.g. one delay token can become two after an
interpolator). Matrix C of dimension ¢x|E|, with a number
¢ of cycles, contains a row for each fundamental cycle, while
each row contains zeroes for the arcs not contained in the
corresponding cycle and integer values else. For the graph
in fig. 1 this is simply §7 = (1,1,1).
The Comfortable Marking

CM,; = I[e] - g[target(e)] - yle] (2)

specifies the amount of tokens necessary on any arc e of
cycle I to activate the following node v = target(e) exactly
g[v] times, the total execution count of this node v in one
iteration. Because of consistency each other node can then
also be activated that way (i.e. an arbitrary e works).
Liveness is necessary for a valid schedule, but in the MR
case this is not just given by WST; > 0 for each loop, as it
was in the SR case. We need to have at least a specific num-
ber W ST on the loop that even depends on the reachability
set of a given do [9] [10]. We can also define the number

3Consistency is now assumed to be valid in this paper

Copyright 1997 |IEEE

LLM (lightest live marking) [9] , below which a cycle can-
not be live, and HDM (heaviest dead marking) [9], above
which a cycle with WST is always live (schedulable).

HDMi= Y [I(e) = 1] yle] (3)

e€Loop

The relations 1 < LLM < HDM + 1 and CM > LLM
always hold. In contrast, for singlerate graphs we simply
have

yle}€ {0,1},¢=1,
WST = Dyum,CM =1,LLM =1, HDM = 0. (4)

The packing factor m is used to denote the compaction of
m iterations to one period (also called execution cycle [11]).
The resulting schedule is then only periodic over the whole
period, not necessarily over one interation. This m corre-
sponds to the unfolding or blocking factor J [11].

For reasons of optical simplification of the results an equa-
lization procedure (see [10] for details) can be applied. This
normalizes all rates at one node to the same value s[v] lea-
ding to yle] € {0,1}, preserves all scheduling characteristics,
multiplies the delays on arcs and lets us use a simpler D,um,
which is the sum of the new number of delays but equals the
previous number W ST of the original graph, where WST is
generally not the simple sum of original delays. This works
by multiplying all values O{e), I(e), D[e] of any arc by y[e].

Vectorization [12] of a DFG means applying the retiming
transformation to accumulate tokens before single nodes to
enable the maximum number of parallel (vectorized) execu-
tions of these nodes.

3. RELATED WORKS
The throughput bound TB of SR-DFGs is shown to be [3]

— min Eeel Die]
- all cycles 1 Zuel T[‘U] (5)

TBSR = Deum,!

n
all cycles 1 Tgum,l

where the sum of tokens D{e] and the sum of the execution
times T[v] need to be known. This result is also known from
the theory of marked graphs in the context of Petri-Nets [7],
the theory of which is also very useful for DFG related to-
pics. Approaches to reduce the asymptotic complexity in
this case are given in {13] and [6).

There are publications concerning the multirate iteration
bounds. A quite imprecise metric is given in [7] (linear in
WST). Another approach [8] is only valid at certain points
(this point is the defined CM from eq. 2). An optimized
approach for the conversion to a SR-DFG with removal of
some redundancy is given in [14].

A typical relation of the maximum throughput vs. num-
ber of delays is presented on figure 2. We observe a huge
gap between the linear limit and the maximum throughput
depending of the value of WST. The more tokens we add
on the arcs the more we increase WST. The throughput is
monotonic over WST, but not each added token leads to
an increase in throughput.

656

Figure 2. Normalized throughput vs. WST

Results regarding the optimum unfolding or blocking fac-
tor m = J are given in [11]. In the multirate case the pro-
posed value is only valid for WST being an integer multiple
of CM. The mentioned saum of normalized delays is exactly
WST/CM.

4. COMPUTATION OF THE UPPER BOUND

Beginning with a multirate graph we apply a procedure to
- calculate our throughput bound TB with equation 6. The

packing factor m of the final implementation is assumed
to be given, because the results depend on the way how
effective a time interval, the mth multiple of the iteration
period time, can be filled with scheduled nodes in a blocked
way (non overlapping). Additional information needed is
the activation frequency g; of node i, the number of delays
D,um, the input rate I(i) on the input arc of node 1 of the
cycle | and a scaling factor y[E(i)] of this input arc E(3),
if the graph is not equalized. The scaling is not mentioned
in the formula, so an equalized graph is assumed. It can be
generalized by replacing D,um with |[WST/y[E(i)]].

The procedure to compute the throughput bound is as
follows:

¢ Equalize Graph G [10] or replace D,um by

|W ST/y[E(i)]] later in eq. 6.

e Choose an m, e.g. Jope from [3].

¢ Decompose G into its cycles [5].

¢ Calculate Dyum or WST, CM and > T: on this cycle.

o Check the range of D,um or WST w.r.t. CM, apply

eq. 7 if necessary.

e ¥D,um > LLM apply eq. 6, else TB is zero.
The following formula represents a bound for multirate mul-
tiprocessor schedules for one cycle (D,um is the independent
variable).

m
TB(Dum,m) = . 6
()" maricr (B i T ©

Equation 6 is valid in the range LLM < WST = D,ym <

CM. Below LLM TB =0 holds (the graph isn’t live). At
each integer multiple z of CM the behavior is periodic plus
a stair of z/ Y T;, therefore

TB(Dau) = | 222) . L

CM J ET +Tch6(Daum mod CM)

(™

Copyright 1997 IEEE

We could even normalize the formula by multiplying T,
leaving the resulting equation 6 independent of time, em-
phasizing the influence of the structure. The characteri-
stic invariant value CM describes where a time-normalized
throughput reaches integer multiples of one. The bound
in [8] is only valid in these points. The overall-bound is
then the minimum of TB; over all cycles I. We emphasize
that this bound is not tight in all cases. The problem is
that the special tight bound not only depends on W ST but
also on the reachability set R(f) It is possible that some
token remainders are never movable within a path, these
hardly contibute to the throughput [10].

5. PROOF

The derivation of eq. 6 is presented below. We assume
the tokens of the cycle to be concentrated on a single arc
(achievable by applying the multirate retiming transforma-
tion [12] [10]). Even if possibly not all of them can be placed
there [10}, assuming all tokens to be there does not decrease
the resulting throughput. Therefore the assumption is safe,
i.e. no throughput greater than the calculated maximum
is possible. The token concentration enables a vectorized
execution [12] which makes.sense for non-overlapping sche-
dules of one loop. Let us further take an equalized graph,
for which we use D,.,, instead of WST. So, if all tokens
are on arc e, only the following node v = target(e) can be
activated and that

Dyum

Actmaz(v) = | =22 T(o)] (8)

times maximum in parallel. By the way, if we take the
maximum of Actmax(v) over all v of the cycle, we get a ma-
ximum utilizable number of processors. During one period
(m times ¢ activations; m iterations) node v must be ac-
tivated exactly m - g[v] times. If node v were the only node
of the cycle then n, sequential activation bursts (each of
duration T,) are at least necessary to complete that period.

o = [
[L%??J] 9

For the nodes with different names can only be activated in
ordered sequence, one timeslot of the schedule is ET‘

The necessary count of timeslots is now the maximum of
all n, for all nodes v of the cycle [.

—1 (10)

n(m) = ma f
Dl(u) J

So eq. 10 shows that we need at least a time n(m) Y T:
to complete one period or m iterations. The throughput is
therefore limited by

m
TB = ———— 11
This leads to the bound in equation 6, completing the proof.
If we apply the cha.tactenstlc values of a singlerate graph
(egs- 1) to eq. 6, we get

(12)

TBspblocked =

[572-1- 2T

657

Eq. 12 is exactly the throughput bound for a singlerate
blocked schedule!. We could eliminate m by using the op-
timum [11] (integer multiples of D,um) or by applying the
limes with m — oo to get equation 5.

6. EXAMPLE

Let us now have a look at the graph G in picture 1. Its
characteristic values are:

§ =(10,5,4), HDM =8,LLM =8,CM =20,Ti = 1
(13)

The figure shows G with WST = 8. Because it is already
equalized (all rates at one node equal) here WST = D,um =
8 holds. This is the smallest D, m that keeps the graph
alive, although a marking is possible with this D,um that
does not guarantee the liveness (e.g. an odd number of
delays on e;). For this graph we can apply the ASAP (as
soon as possible) schedule shown on Figure 3.

We compute the necessary activation bursts by eq. 9 as

ny = [10/4] =3,n, = [5/2] =3,ns = [4/1] =4. (14)

Therefore we need 4 time-slots of t; +124t3 to complete m =
1 iteration. What we observe is that one node execution is
the bottleneck constraining the schedule. Figure 2 shows

P | 2 2 2 2
Pr | 2 i % 3
P3: v
(142443 time-siot
4 g1+2413) =4

Figure 3. Example schedule

the normalized throughput as a function of the WST. The
linear dependency is the bound provided by Murata [7] et
al..

The liveness condition has to be checked to obtain the
zeroes up to WST = 7, otherwise erraneous (but valid) bo-
unds might be introduced by eq. 6. Above CM the same
pattern repeats plus one full throughput step of value one
and so on. We could consider to decompose one cycle into
several with integer multiples of CM plus one with the re-
maining delays, the throughput of them all accumulates
algebraically.

We observed from numerous simulations that a certain
kind of point symmetry exists around WST = (CM +
LLM - 1)/2. In our example this is at (WST =
13.5,NTB = 1/2). We are not able to explain this yet,
it seems like a kind of nonexistent-delay-brake that slows
down the system if we have less than CM delays.

7. CONCLUSION

We have adressed the problem of finding the quantitative
prediction of the maximum throughput the implementation
of an multirate algorithm can reach. The formula eq. 6 can
be used to determine throughput bounds of each cycle in
the multirate dataflow graph. The results show obvious

4blocked schedule means m iterations in one period, where
there is no overlapping between periods

Copyright 1997 IEEE

bottlenecks in the design (critical loops) and can be used
to selectively improve an algorithm by changing some of
the influencing parameters. The anomalies of multirate da-
taflow graphs [10] lead to the conclusion that a more precise
metric cannot be found at all. The expensive transforma-
tion to a singlerate graph will give exact information, but
the explosion of problem size does not enable the analy-
sis of the bottlenecks. However, the assumption to have a
blocking factor m is not always desired. With limited res-
sources only low values of m are practical, so all of them
have to be tested to determine the maximum.

REFERENCES

{1] E. A. Lee and D. G. Messerschmitt, “Synchronous data
flow,” Proc. of the IEEE, vol. 75, pp. 1235-1245, Sep-
tember 1987,

[2] P. D. Hoang and J. M. Rabaey, “Scheduling of DSP
programs onto multiprocessors for maximum through-
put,” IEEE Trans. Acoust., Speech, Signal Processing,
vol. 41, pp. 2225-2235, June 1993.

{3] K. Parhi and D. Messerschmitt, “Static rate-optimal
scheduling of iterative data-flow programs via optimum
unfolding,” IEEE Transactions on Computers, vol. 40,
pp- 178-195, February 1991.

[4] A. Fettweis, “Realizability of digital filter networks,”
AEU, vol. 30, pp. 90-96, Feb. 1976.

{5] D. B. Johnson, “Finding all the elementary circuits of
a directed graph,” Siam Journal on Computing, vol. 4,
pp. 77-84, Mars 1975.

[6] D.Y.Chao and D.T.Wang, “Iteration bounds of single-
rate data flow graphs for concurrent processing,” IEEE
Transactions on Circuits and Systems, pp. 629-634,
Sept. 1993.

[7] T. Murata, “Petri nets: Properties, analysis and appli-
cations,” Proceedings of the IEEE, vol. 77, pp. 541-580,
Apr. 1989.

{8] M. Chao, D.T. Zhou and D. Wang, “Multiple-weighted
marked graphs,” Proceedings of IFAC, pp. 259-262,
1993.

[9] E. Teruel, P. Chrzatowsky-Wachtel, J. Colom, and
M. Silva, “On weighted T-systems,” Application and
Theory of Petri Nets, pp. 348-367, 1992.

[10] V. Zivojnovié, R. Schoenen, and H. Meyr, “On re-
timing of multirate DSP algorithms,” in Proc. of
ICASSP, vol. VI, (Atlanta), pp. 3310-3313, May 1996.

[11] K. Parhi, “Algorithm transformation techmniques for
concurrent processors,” Proceedings of the IEEE,
vol. 77, pp. 18791895, Dec. 1989.

[12] V. Zivojnovi¢, S. Ritz, and H. Meyr, “Retiming of DSP
programs for optimum vectorization,” in Proceedings of
the ICASSP’94 - Adelaide, 1994.

[13] S. H. Gerez, S. M. Heemstra de Groot, and O. E. Herr-

mann, “A polynomial-time algorithm for the compu-
tation of the iteration-period bound in recursive data-
flow graphs,” IEEE Trans. on Circuits and Systems I,
vol. 39, pp. 49-52, January 1992.

[14] K.Ito and K.K.Parhi, “Determining the minimum ite-
ration period of an algorithm,” Journal of VLSI Signal
Processing, vol. 11, 1995.

658

