CODE POSITIONING TO REDUCE INSTRUCTION CACHE MISSES IN SIGNAL
PROCESSING APPLICATIONS ON MULTIMEDIA RISC PROCESSORS

Hans-Joachim Stolberg

Masao Ikekawa®

Ichiro Kuroda®

Laboratory for Information Technology, University of Hannover, Germany
Information Technology Research Laboratories, NEC Corporation, Kawasaki, Japan
Email: stolberg@mst.uni-hannover.de

ABSTRACT

Real-time operation of signal processing applications on
multimedia RISC processors is often limited by high in-
struction cache miss rates of direct-mapped caches. In this
paper, a heuristic approach is presented which reduces high
instruction cache miss rates in direct-mapped caches by
code positioning. The proposed algorithm rearranges func-
tions in memory based on trace data so as to minimize cache
line conflicts. Moreover, a new method to extract potential
cache misses from trace data is introduced which enables
accurate cache behavior analysis and greatly enhances code
positioning efficiency. Application of code positioning to an
MPEG-1 video decoder implementation on the V830 mul-
timedia RISC processor reduced instruction cache refill cy-
cles by 66-98 %. The proposed code positioning algorithm
does not require hardware modifications; it can easiliy be
integrated in an object linker to antomate the optimization
process.

1. INTRODUCTION

Complex real-time signal processing tasks are increasingly
implemented on multimedia RISC processors [1][2], enabled
by rapid advances in clock speed and performance as well
as by integration of DSP execution units. RISC-based im-
plementation offers the advantages of easy programmability
and availability of excellent optimizing compilers, thus re-
ducing both design time and cost. However, because of high
clock speed in RISC processors, access to instructions and
data in external memory cannot be accomplished without
stall cycles. Therefore, RISC processors incorporate caches
to keep a subset of instructions and data on-chip where
they are accessible within one clock cycle. Thus, exter-
nal memory accesses and resulting stall cycles only occur
if a requested instruction or datum is not found in cache.
In order to achieve a tradeoff between stall cycles, storage
capacity, and implementation cost, a multi-level memory
hierarchy may be employed with a small, fast-accessible on-
chip cache as first level, a larger external cache as second
level, and the main memory as highest level. For refillment,
caches are subdivided into cache lines containing multiple
instructions or data in order to exploit spatial locality and
to utilize fast memory access modes.

Due to their simplicity compared to other cache organi-
zations, direct-mapped caches are the most cost-effective
solution for multimedia RISCs as they offer the highest sto-

Copyright 1997 |IEEE

rage capacity on a given silicon area; they are furthermore
characterized by short access times, which in turn account
for high processor clock speed. With direct-mapped organi-
zation, each memory entry has exactly one location where
it can appear in cache, and only one entry can reside at that
location at a time. Thus, when an instruction or datum not
present in cache is accessed, it will be loaded to its destined
cache line, replacing the entire previous cache line entry. As
a result, cache misses caused by conflicts between memory
addresses that map to the same cache line are more likely
to arise in direct-mapped caches.

Real-time signal processing applications are especially
prone to instruction cache misses in direct-mapped caches
as they typically involve a limited set of functions execu-
ted periodically to process the incoming data. Therefore,
with an unfavourable code layout where frequently execu-
ted code parts map to the same cache lines, instruction
cache misses will repetitively occur in the same functions,
degrading performance seriously. The effect is even aggra-
vated for cost-sensitive applications where a second-level
cache cannot be afforded, which dramatically increases the
miss penalty. In consequence, in spite of high CPU perfor-
mance offered by modern multimedia RISC processors, in
many cases real-time operation of signal processing tasks
is severely threatened by a prohibitive high number of in-
struction cache refill cycles.

In order to make the implementation advantages of mul-
timedia RISC processors accessible for real-time signal pro-
cessing applications, code positioning can be employed
to minimize mutual instruction replacement and resulting
cache misses. In this paper, a new code positioning scheme
is presented which rearranges functions of a signal proces-
sing application in memory based on trace data so that the
mapping of frequently accessed code parts to same cache
lines in a direct-mapped cache is avoided.

In section 2, the code positioning approach—comprising
trace data processing and function mapping—is described.
Section 3 presents simulation results for the application of
code positioning to an MPEG-1 video decoder implementa-
tion on the V830 multimedia RISC processor, and section 4
concludes the paper.

2. CODE POSITIONING

The proposed code positioning approach consists of two
steps: trace data processing and function mapping. At first,
however, trace data has to be collected while executing the
target application with typical input data. The collected

699

Function 2

Function 1

1. Cache Line

2. Cache Line

1. Cache Line

= Count as Potential Cache Miss

Figure 1. Scheme for counting potential cache mis-
ses in a sequence of memory accesses.

trace data has to contain the sequence of memory acces-
ses during program execution—information on cache hits
or misses is not required at this stage.

2.1. Trace Data Processing

A new method is introduced which exploits the address se-
quence information inherent in instruction trace data as
input for the code positioning algorithm. So far, existing
code positioning methods [3][4][5][6] had to rely on purely
statistical data such as call graphs or execution frequencies
that do not contain information on sequential program be-
havior. Address sequence information, however, is essential
for cache behaviour optimization since occurence of cache
misses is related to the sequence of memory accesses rather
than to their mere number.

The new method evaluates the address sequence of me-
mory accesses in order to extract only those accesses which
can actually lead to cache misses during code execution. As
each function of the original implementation will be pre-
served in the code positioning without modification, repea-
ted memory accesses to same cache lines within execution
of one function are always sure to be served by cache hits.
They can therefore be identified in the instruction trace and
discarded as they are irrelevant for cache behavior optimi-
zation. In most of the existing methods [3][4][5])[6], this way
of exploiting the address sequence in trace data is not pos-
sible as they rearrange code in basic block units, which can
lead to mutual replacement even during execution of one
function. Here, functions denote the program subroutines
delimited by their start addresses and concluding return
instructions.

The new method of trace data analysis comprises the
following steps:

1. In the memory layout of the original implementation,
subdivide the memory range of each function into cache
line units, assuming the first instruction of each func-
tion to be aligned to the start of a cache line.

2. Of the memory accesses listed in the instruction trace,
count only the first access to each cache line as long as
one function is executed.

Copyright 1997 |IEEE

§ N (Tteration k)

3 g

5 /\J

3

:§_ || |llmhl|||||"l||||||.l"|| i |"l|||||||.l||||||||||.
Cache Lines)

; Function k+1:

5 i

2

3

.g

g

(-9

i

P

-

8

3

:

Cache Lines

Figure 2. Successive allocation of functions to cache
space.

3. Repeat step 2 every time a new function call has oc-
curred.

Figure 1 demonstrates this counting scheme by example
of two alternately executed functions. As the final function
layout in memory is not yet defined at this stage, it always
has to be assumed that a new-called function does not re-
side in cache as it might have been replaced by intermediate
execution of other functions. Therefore, memory accesses
have to be counted again for potential cache misses after
every new function call, as expressed in step 3. As a re-
sult of this method, the number of potentially arising cache
misses per cache line unit during execution of the target
application is obtained separately for each function.

2.2. Function Mapping

Based on the number of potentially arising cache misses
derived from trace data, the functions of the target appli-
cation are then allocated to cache space so as to minimize
the overlapping of code parts with high numbers of poten-
tial cache misses in the same cache line. This is achieved
by the new heuristic code positioning algorithm comprising
the following steps:

1. Sort functions for their average number of potential
cache misses per cache line in descending order.

2. For the first function in the sorted list, find that posi-
tion in cache space which leads to the most homoge-
neous distribution of potential cache misses over the
entire cache space, considering all already allocated
functions.

3. Repeat step 2 for each next function in the sorted list,
until all functions are successively allocated.

700

Variant A Variant B
Fl

3 l F2

.2 2z

N

P c

5 Z

] -

o Z

= o

8 Z

e EA

8 - F4 Fa

2 o0 Bg BoLl
BB, 28, B8,
Cache Cache Cache Cache
Lni Lnj Ini Lnj

= Maximum Possible Cache Misses per Cache Line

Figure 3. Two variants of function overlapping in
cache lines.

4. Map function start addresses from cache space to me-
mory space so that each instruction will be assigned to
a unique memory address.

Figure 2 demonstrates this scheme of function allocation
for three iterations. As can be seen, functions are successi-
vely allocated to cache space aiming at a homogeneous dis-
tribution of potential cache misses over cache lines. Such
a distribution is achieved by calculating for all possible
cache positions of the current function the squared sums
of potential misses per cache line including the already al-
located functions, and by selecting that allocation which
leads to the minimum overall sum. The initial sorting of
functions maintains the highest allocation flexibility for the
most cache-intensive code parts and rules out overlapping
of those parts in the same cache lines.

Figure 3 explains the underlying strategy of the algo-
rithm: if, as in variant A, two functions with high num-
bers of potential cache misses map to the same cache line,
amounting to a highly unhomogeneous distribution of po-
tential misses over cache lines, the overall cache miss proba-
bility will be high since these functions will suffer frequent
mutual replacement. If however the sums of potential cache
misses for all functions are equally distributed over cache
space as in variant B, functions with high numbers of po-
tential misses will come to share the same cache lines only
with functions of much lower numbers of potential misses,
thus leading to a low overall cache miss probability as mu-
tual replacement can occur only infrequently. Therefore, by
forcing a homogeneous distribution of potential misses over
cache space, the heuristic algorithm achieves a minimum
instruction cache miss rate for direct-mapped caches.

As a result of the heuristic algorithm, a new start ad-
dress is obtained for each function of the signal processing
application where it has to be aligned to in memory. Since
the functions themselves remain unchanged, they only have
to get linked together with regard to their new start ad-
dresses. As the code positioning algorithm may introduce
allocation holes between functions in the final mapping, the
overall memory occupied by the program code is likely to
increase during the link process. However, while external
memory size is not a critical issue, a significant reduction of
cache miss rate and better utilization of on-chip memory is
thus provided. It should be noted that memory bus load or
execution cycle count are not affected by inserted allocation

Copyright 1997 IEEE

flower- Without Code | With Code | Reduced
garden Positioning | Positioning by

B-Frame 211,729 71,356 66.3 %
P-Frame 277,613 5,336 98.1 %
I-Frame 27,056 4,386 83.8 %

Table 1. Instruction cache refill cycles for MPEG-1
sequence flowergarden before and after code positio-
ning.

holes as their memory locations will never be addressed.

Aside from the initial simulation of the target application
to generate trace data, the described heuristic code positio-
ning algorithm and the preceding trace data analysis both
can easily be integrated in an object linker in order to auto-
mate the optimization process and to make it transparent
for users; modifications of the compiler are not necessary. In
contrast, most existing code positioning methods [3}{4][5][6]
require massive object code modifications as they operate
on basic block level, which makes them difficult to imple-
ment.

3. SIMULATION RESULTS

The described code positioning algorithm has been applied
to an MPEG-1 software video decoder implemented on the
multimedia RISC processor V830 [7] in order to enable real-
time operation by a low cache miss rate for V830’s 4-kbyte
direct-mapped instruction cache.

The V830 is a low-cost, low-power 32-bit RISC micro-
processor with DSP capabilities, delivering 118 MIPS at
100 MHz. DSP execution units such as multiply-adder and
special DSP instructions enable efficient implementation of
complex multimedia algorithms. In addition, V830 offers
16 kbyte of on-chip memory, comprising instruction and
data RAMs as well as direct-mapped instruction and data
caches of 4 kbyte each. While on-chip memory access can
always be accomplished within one clock cycle, external me-
mory access to refill a cache line of 16 byte accounts for at
least 21 clock cycles in the V830 MPEG-1 video decoder
system environment when assuming the best case of SRAM
as external memory.

Besides compiler and assembler, a V830 simulator is
available which is able to collect trace data during simu-
lated program execution in order to support software de-
velopment. Additional tools enable several information to
be extracted from generated trace data. The trace data re-
quired for code positioning as well as the simulation results
presented in this paper have been obtained using the V830
simulator.

Table 1 presents simulation results for the numbers of
instruction cache refill cycles in MPEG-1 video decoding
before and after code positioning, and their reduction. The
simulation has been performed for decoding MPEG-1 se-
quence flowergarden which comprises I-, P- and B-pictures
as defined in the MPEG-1 standard. Cache refill cycles
are reduced by 66-98 % for this sequence; simulation for
other MPEG-1 sequences showed very similar results, inclu-
ding those sequences which have not been used for initial
trace data collection. In general, for most signal processing
applications including MPEG-1 decoding, the sequence of

701

300 T T T T
Before Positioning
250 - b

8
—

Cache Misses
=S
T
1

(1] 5000 10000 15000 20000 25000
Memory Range

Figure 4. Instruction cache misses over memory
range in decoding one B-frame of flowergarden before
code positioning.

function calls during program execution can be assumed as
sufficiently independent from input data so that code po-
sitioning as described here will always lead to satisfactory
results.

In case of the MPEG-1 video decoder, instruction cache
refill cycles have been decreased from 27.4 % of overall exe-
cution clock cycles down to only 1.6 % by a combination
of using V830’s internal 4-kbyte instruction RAM and ap-
plying code positioning. Although the larger part of this
reduction is due to the use of V830’s internal instruction
RAM (down to 6.5 %), real-time operation has only been
achieved after additional code positioning. On processors
without the benefit of internal instruction RAM, a much
higher gain can be expected.

Figures 4 and 5, which show the number of cache misses
per cache line in decoding a B-frame of flowergarden be-
fore and after code positioning, demonstrate the effective-
ness of the new algorithm in limiting the number of cache
misses to low values for all cache lines as it has been expec-
ted from theoretical consideration. This effect also helps to
guarantee rigid upper limits for execution times of program
segments, which is an important issue in many real-time
applications.

In order to reduce cache misses in direct-mapped data ca-
ches as well, it seems conceivable to apply a similar scheme
for static memory layout of data structures.

4. CONCLUSION

In this paper, a new code positioning scheme has been in-
troduced which allows to exploit the advantages of modern
multimedia RISC processors for the implementation of real-
time signal processing applications without having to suf-
fer performance loss due to frequent instruction cache mis-
ses. The heuristic code positioning algorithm rearranges the
function layout in external memory in order to minimize
mapping of frequently executed code parts to same cache
lines in direct-mapped caches. Efficiency of code positioning
is guaranteed by the novel approach of extracting informa-
tion from trace data relevant for cache behavior optimiza-
tion. The algorithm can easily be integrated in an object
linker in order to automate the optimization process. Ap-
plication of the code positioning algorithm to an MPEG-1

Copyright 1997 |IEEE

300 T T T T
After Positioning

L. W] N

0 5000 10000 15000 20000 25000
Memory Range

Figure 5. Instruction cache misses over memory
range in decoding one B-frame of flowergarden after
code positioning.

software video decoder implementation on the V830 mul-
timedia RISC processor reduced the number of instruction
cache refill cycles by 66-98 %, thus proving the effective-
ness of the presented method. For many signal processing
applications, previously unattained real-time operation on
multimedia RISC processors can become possible with the
presented code positioning approach.

5. ACKNOWLEDGEMENT

The authors would like to thank Dr. Takao Nishitani for
his continuing encouragement, support, and for providing
excellent working conditions.

REFERENCES

[1] V. Bhaskaran, K. Konstantinides, R. B. Lee, and J. P.
Beck. “Algorithmic and Architectural Enhancements
for Real-Time MPEG-1 Decoding on a General Purpose
RISC Workstation”. IEEFE Trans. Circuits and Systems
for Video Technology, Vol. 5(No. 5):380-386, 1995.

[2] K. Nadehara, I. Kuroda, M. Daito, and T. Nakayama.
“Low-Power Multimedia RISC”. IEEE Micro, Vol.
15(No. 6):20-29, December 1995.

{3] S. McFarling. “Program Optimization for Instruction
Caches”. In Proc. 8rd Int’l. Conf. On Architectural
Support for Programming Languages and Operating Sy-
stems, pages 183-191, April 1989.

[4] W.-m. Hwu and P. Chang. “Achieving High Instruction
Cache Performance with an Optimizing Compiler”. In
Proc. 16th Ann. Int’l. Symp. On Computer Architecture,
pages 183-191, June 1989.

[5] K. Pettis and R. Hansen. “Profile Guided Code Po-
sitioning”. In Proc. Conf. On Programming Language
Design and Implementation, pages 16-26, June 1990.

[6] A.D. Samples. Profile-Driven Compilation. PhD thesis,
University of California, Berkeley, 1991.

[7] K. Nadehara, H.-J. Stolberg, M. Ikekawa, E. Murata,
and I. Kuroda. “Microprocessor Architecture Design for
Low-Cost, Low-Power Video Decoding”. In VLSI Signal
Processing IX, pages 438-447. IEEE, October 1996.

702

