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ABSTRACT

This paper describes some of the main problems and is-

sues specific to the transcription of broadcast news and
describes some of the methods for solving them that have
been incorporated into the IBM Large Vocabulary Con-
tinuous Speech Recognition System.

1. INTRODUCTION

Significant advances in speech recognition technology have
been achieved recently, as seen on tests conducted with
read speech corpora such as the Wall Street Journal coz-
pus [1]. The focus of research has shifted recently to tran-
scription of “found” speech like radio/TV broadcast news.
Transcription of broadcast news presents technical chal-
lenges arising from several sources of signal variability.
A typical broadcast news segment contains speech and
non-speech data from several sources, such as the signa-
ture tune of the show, interviews with people on location
- possibly under very noisy conditions - and interviews
over the telephone, commercials, etc. Broadly speaking,
the data in such broadcasts can be characterized using
three criteria: the quality of the microphone or channel,
the characteristics of the speaker, and the condition of
the background. The signal might be acquired using a
high quality microphone, a low bandwidth microphone,
or could be telephone quality. The speaker may be an
experienced announcer or correspondent or an inexperi-
enced speaker.The speech from the former appears sim-
ilar to read speech, whereas the latter produces largely
spontaneous speech. The background may contain music,
noise, or other interfering speech. In some cases, there is
no speech present - the signal might consist of a musical
interlude or an extended period of noise such as street
noises added to evoke an environment.

Decoding this data with a system trained on a clean
training corpus such as the Wall Street Journal gives very
high error rates It is necessary to develop new techniques
to deal with such data. Preliminary ideas along these
lines were explored in the IBM system used in the ARPA
sponsored, November 1995 Hub4 radio broadcast news
transcription task. Error rates dropped from 47% to 27%
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on the 1995 Hub4 evaluation test data [5, 7, 8]. This
paper describes continuing work on the various problems
encountered and the solutions attempted for transcription
of broadcast news.

The basic philosophy is to first try and identify the seg-
ments of input data that belong to one of several classes
and use separate modeling techniques appropriate for each
class. For instance, segments detected as pure music are
discarded and not decoded, segments identified as tele-
phone quality speech are decoded by a system trained on
telephone bandwidth speech, and so on. In the following
sections, we describe techniques to handle issues in each
class.

A brief description of our base recognition system fol-
lows (see [2, 4, 3] for details). The system uses acoustic
models for sub-phonetic units with context-dependent ty-
ing. The instances of context dependent sub-phone classes
are identified by growing a decision tree from the available
training data [2] and specifying the terminal nodes of the
tree as the relevant instances of these classes. The acoustic
feature vectors that characterize the training data at the
leaves are modeled by a mixture of Gaussian pdf’s, with
diagonal covariance matrices. The HMM used to model
each leaf is a simple 1-state model, with a self-loop and a
forward transition.

The training data used for the models in this paper
comes from the following sources: WSJ-SI284 [5], MP-
10 [5], BN-87 (the official 1996 Hub4 evaluation train-
ing data distribution consisting of 30 hours of broadcast
shows from radio and TV) The test data is from one of
the following sources: Dev95H4 (1995 Hub4 development
test data), Eval95H4 (1995 Hub4 evaluation test data)
and Dev96H4 (1996 Hub4 development test data). Un-
like Dev95H4 and Eval95H4 test data, Dev96H4 data is
distributed with class information (prepared clean - F0,
spontaneous clean - F1, low fidelity - F2, music corrupted
- F'3, noisy - F4, non-native - F6, others - FX) allowing one
to use it in a partitioned mode (manual segmentation fol-
lowed by decoding) or unpartitioned mode (i.e., automatic
segmentation followed by decoding). The language model
used for all experiments in this paper (unless otherwise
stated) is the one described in [5].
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Section 2. describes the segmentation and classifica-
tion scheme and Section 3. the models for the various
conditions used in our experiments. The baseline mod-
els will be called M94 (trained on WSJ-SI1284 [6]), M95c,
M95m and M95t (trained by MAP adaptation [10] of M94
on clean, music-corrupted and telephone speech portions
of MP-10 respectively [5]).

2. SEGMENTATION AND CLASSIFICATION

First, the distribution of feature vectors for each condi-
tion is modeled as a Gaussian mixture [5] trained from
hand-labeled data from the MP-10 and BN-87 databases.
For each feature vector z,, and model M; for condition j,
P(z./M;) gives the likelihood of the frame coming from j.
Since the condition is typically stable for a duration of a
second or so, one imposes a minimum-length constraint on
the segments. This is done by assuming a hidden Markov
model for the generation of the input data as shown in
Fig. 1. The j** path in the model corresponds to the in-
put data belonging to the j** class, and the probability
distribution of the arcs ¢j1 — ¢ n is given by M;. The
minimum length constraints on the segments are imposed
by constraining the minimum length of the paths. The
Viterbi algorithm is used to trace a path through the trel-
lis corresponding to the model in Fig. 2., and to assign a
class id to contiguous sets of the input feature vectors.
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speech
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Fig. 2
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For the Dev35H4 test data conditions were separated
one at a time, i.e. first pure music segments, then tele-
phone segments, and then music-corrupted segments were
identified and separated. Finally one is left with clean
speech. This organization enables use of different fea-
ture spaces for each binary classification problem. For
instance, the feature space used to model the pure mu-
sic segments was the 60-dimensional feature space that
was also used for decoding. The feature space used to
model telephone-speech was 24-dimensional cepstra aug-
mented with their first and second differences to make up
a 72-dimensional feature vector. Table 1 shows the per-
formance of this segmentation algorithm on Dev95H4.

Table 1
Class Corr | Miss% | Ert%
Music 163.53 9.2 5.3
Telephone 766.62 0.13 4.2
Music & speech | 308.66 2.8 39.6
Correct speaker | 1185.96 | 17.3 13.6

On Dev96H4, a different strategy was used. Only linear
HMM with 72 dimensional feature vectors were used. The
separation between classes is no longer done in a binary
fashion. All the gaussians are trained on the correspond-
ing condition in BN-87 training data, except for the first
level of extraction of clean data which was trained on MP-
10. The training data in MP-10 was carefully hand-tagged
so that no distorted speech was tagged as clean. Using
BN-87 clean data resulted in often classification of clean
speech as noisy speech or even speech plus music.

It was observed on Dev95H4 as well as Dev96H4 that
this strategy sometimes tags telephone segments as pure
music or music plus speech. Therefore, after segmenta-
tion, music, music plus speech and telephone segments are
further classified into BL (bandlimited) - and NBL (non-
bandlimited) using the system previously described. Mu-
sic. BL, telephone. BL and music+speech. BL segments are
tagged as telephone.BL, music. NBL segments are consid-
ered as pure music and speech+music.NBL is considered
as speech+music. On Dev96H4 development data, this
strategy takes care of such observed misclassifications of
long telephone segments.

3. CLASS-SPECIFIC MODELS

3.1. Robust Model

By using all the data in BN-87 that excludes music-
corrupted speech (F3) and low-fidelity speech (F2) we
build a “conglomerate” model (M96ALL) from scratch
(i.e., MP-10 and WSJ-SI-284 data were not used to build
this model) that is quite robust to most conditions as the
results below show.
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3.2. Clean Speech

Of the Dev96H4 data about 18% is clean and prepared
speech (Dev96H4-F0). For this data the system was built
by MAP adaptation of the clean speech model used in [5]
(which was obtained by MAP using MP-10 on the WSJ-
SI-284 models) using the BN-87 F0 data. Unsupervised
adaptation is performed on this data depending on du-
ration d (in seconds) as follows: if d < 1 no adaptation
is done, if 1 < d < 10 1 iteration of MLLR is done, if
10 < d < 30 3 iteration of MLLR is done followed by
ABC adaption (described below), if d > 30 the CT adap-
tion technique described in [13] is used. Some of perfor-
mance results on Dev96H4-FQ are described in Table 2.

Table 2
Data T Model LWER
Dev96H4-F0 M95c 16.6%
Dev96H4-F0 M96F0 14.8%
Dev96H4-F0 | M96F0+Adaptn. | 14.0%

3.3.

For spontaneous speech the models are obtained by MAP
adaptation of M95¢c models using BN-87 F0 and F1 data.
Further unsupervised adaptation is done using iterative
MLLR. Nearly 25% of the Dev96H4 data is spontaneous
speech (Dev96H4-F1). Performance on this data is given
in Table 3.

Spontaneous Speech

Table 3
Data [ Model | WER
Dev96H4-F1 M95¢c 42.0%
Dev96H4-F1 | M96FALL | 38.8%
Dev96H4-F1 M96F1 38.8%
3.4. Mausic Corrupted Speech
Table 4
Data L Model [ WER
Dev96H4-F3 M96FALL | 38.8%
Dev36H4-F3 M96F3 38.8%
Dev96H4-F3++ M9I6F3 37.5%

The clean WSJ SI-284 training data is transformed
to be close to the test acoustic space by digitally adding
pure music samples of various types from BN-87. This
transformed training data is used to train music-corrupted
models (M96F3) that are then MAP adapted using music-
corrupted broadcast BN-87 training data. The silence
models were augmented using gaussian mixtures model-
ing pure music data (M96F3++). On Dev96H4-F3 data
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(which is about 7% of the Dev96H4 data) the WER is
given in Table 4.

3.5.

Close to 13% of the data in Dev96H4 is noise-corrupted
speech data (Dev96H4-F4). The models (M96F4) were
built using map adaptation of the clean models used in
the 1994 Hub4 evaluation [5] using data from BN-87 corre-
sponding to the noise or F4 class. To increase the length of
the segments used for unsupervised adaptation, segments
with similar acoustic properties are aggregated with a V@
classification of the feature vectors. It essentially aggre-
gates same speakers or same SNR when noise dominates.
Adaptation is done using iterative MLLR on the base
model. The final models are further improved by exploit-
ing the correlation between HMM-states to better predict
the gaussians with little or no adaptation data from those
with sufficient adaptation data. This technique is called
adaptation by correlation (ABC) and will be described in
a later paper. The results on Dev96H4-F4 are shown in
Table 5.

Noise Corrupted Speech

Table 5
Data I Model iWER
Dev96H4-F4 M96FALL 26.5%
Dev96H4-F4 M96F4 26.3%
Dev96H4-F4 M96F4+MLLR 24.1%
Dev96H4-F4 | M96F4+MLLR+ABC | 23.6%

3.6. Telephone Bandwidth Speech

About 18% of the data in Dev96H4 is low-fidelity speech
data (Dev96H4-F2). This is typically composed of mainly
telephone and some non-telephone data. M95t and M95m
models give WERs of 59.95% and 57.7% respectively.
MAP adaptation on the former degrades performance sig-
nificantly while on the latter (using BN-87 data corre-
sponding to the F4 and F2 classes) it reduces the WER
to 50%, with large variability in performances across
segments of the test data. Clearly telephone and non-
telephone low fidelity data must be treated separately.
Using gaussian mixture models for these two classes and
the segmentation algorithm described earlier, BN-87 F2
training data is separated into BL (bandlimited) and
NBL (non-band-limited) segments. The Gaussians where
trained on MP-10 where the telephone tags always corre-
spond to BL. On the Dev96H4-tele, the classification has
no error. Both classes were roughly of equal size. Starting
respectively from the M95t models and M96m models we
performed MAP adaptation using respectively the F2.BL
and F2.NBL+F4 portions of BN-87. The results are sum-
marized in Table 6. The combined error rate dropped to
43%. Note that most of Dev96H4-F2.BL segments are
spontaneous, explaining the high error rate.
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Table 6

Data | Model | WER
Dev96H4.F2.BL M95¢ 61.0%
Dev96H4.F2.NBL M95¢ 52.0%
Dev96H4.F2.BL M95m 70.0%
Dev96H4.F2.NBL M95m 52.0%
Dev96H4.F2. NBL | M96F2NBL | 27.0%
Dev96H4.F2.BL MI6F2BL | 59.8%

3.7. Speech From Non-Native Speakers

Nearly 9% of the data in Dev96H4 are from non-native
speakers (Dev96H4-F5). When decoded with the 1995
Hub4 baseline system described in [5] the WER is 37.5%.
We built a model (M96F5) by MAP adaptation using data
from BN-87 corresponding to the non-native speakers -
both prepared and spontaneous. Furthermore, unsuper-
vised iterative MLLR adaptation is applied using scripts
from an initial decoding. Despite the difference in vocab-
ulary size (1700) for IBM96-NN, the improvements are
comparable. The results on Dev96H4-non-native are sum-
marized in Table 7.

Table 7
Data | Model | WER
Dev96H4-F5 M95c 37.5%
Dev96H4-F5 M96ALL 28.7%
Dev96H4-F5 M96F5 26.2%
Dev96H4-F5 | M96F54+MLLR | 20.7%

4. MUSIC SUPPRESSION

We attempted to suppress steady notes due to music,
while preserving the faster-varying speech frequency com-
ponents, by calculating the rate-of-change of the dominant
frequency in local areas of the short-term power spectrum.
We trained this algorithm by means of a novel numeri-
cal optimization method, using data generated by mixing
controlled levels of music with clean speech, and using
the signal-to-noise ratio after suppression as the objective
function. Although the music suppressor achieved a small
improvement in the signal-to-noise ratio, the recognition
deteriorated from an error rate of 45.1% to 46.2% on a
_ subset of Dev96H4-F3.

5. CONCLUSIONS

Transcription of radio broadcasts poses several challenges.
Many of these are problems whose solution will signifi-
cantly advance the state-of-the-art in speech recognition.
Recognition systems have to be developed that can cope
with a variety of signal environments, speaking styles and
accents, and multiple background noise sources. We have
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made an initial attempt at developing a system for tran-
scription of broadcast news shows. The results obtained
in the initial test are encouraging. Clearly much more
work needs to be done in order to obtain an acceptable
level of accuracy.
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