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ABSTRACT

In most practical applications of speech recogni-
tion, like for example in a dictation system (cf.
[3]), the acceptance and performance of the sys-
tem depends strongly on its capability to adapt
to the special speaker characteristics.  Restricted
to the problem of language model adaptation, one
has to find an efficient way to combine a typically
well-trained a priori estimator for a domain with a
regularly updated but undertrained estimator re-
flecting the actual speaker-specific data so far. To
assure a greater impact of reliable speaker-specific
information, in this paper we present a new lan-
guage model estimation technique that makes ex-
plicit use of the confidence in estimates obtained
on the (typically small) adaptation or training
data. Mathematically it attempts to perturb a
given reliable a priori distribution in such a way
that it fits into the confidence regions given by
the training material. Experiments performed on
real-life data supplied by US radiologists indicate
that the method could improve standard adapta-
tion techniques like linear interpolation.

1. INTRODUCTION

Given some basic vocabulary V, a language model
is given by an estimator P which tries to approxi-
mate the unknown probability of some finite word
sequence hy := (wy, ..., wn), which also indicates
the history of words spoken so far. Because of
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P(wy,...,wy) = HP (w;|h;—1)

=1

alanguage model can be interpreted as a collection
of discrete conditional distributions P(-}k) over a
finite vocabulary. Standard methods to establish
P(wl|h) for events (h,w) usually count event fre-
quencies on corpora, modify them in a more or less
simple way (like subtracting 1 from a count if pos-
sible [4]) and use the result as a point estimation
for the unknown probability that the event occurs.
Especially for small counts, this has the problem
that the resulting estimate is of low confidence. In
this paper, we present a new estimation technique
that makes explicit use of this confidence. Starting
with a typically small corpus of adaptation ma-
terial, of which we know from experience that it
is representative of the speaker-specific test data,
we compute confidence intervals [a(w), B, (w)] for
history /word events (h, w), based on the assump-
tion of a binomial distribution. For each history
h we now would like to choose our estimator out
of the set Cp of all distributions respecting these
confidence intervals by minimizing the Kullback-
Leibler distance D(:||-) to a given strictly positive
a priori distribution P(-|h). Using Distr(V) to in-
dicate the set of all strictly positive discrete distri-
butions over V, this perturbation of P(:|h) is more
precisely decribed by

P(|h) := argmin D(P(-|R)||Q(-|h))
Q(-|r)eCn
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using the notations

Dllg) = 3 p(w) log (5’%)

wevV
for ¢, p € Distr(V) and

Ch := {q € Distr(V)|q(w) € [an(w), B(w)]}-

Note that in case of using a relative frequency
distribution for P(:|h), this coincides with a max-
imum likelihood approach under confidence con-
straints Cj,.

As discussed in more detail in the next Section,
it is possible to recognize the BMPC?! estimator
P(w|h) as a structurally simple cut-off scheme.

Since P(:|h) may be any distribution, particu-
larly one obtained by linear interpolation or other
adaptation techniques like fill-up (cf. [1]), our
method can be used as a post-processing step to
further improve a given model. The tests indicate
that it does a good job at this.

2. THEORETICAL DISCUSSION

Solving the minimization problem described in
Section 1 for a given strictly positive probabil-
ity distribution P(:|h) and intervals [ay, (w), Ba(w)]
such that 3" ap(w) < 1 < 3 Ba(w) leads to the

following sttzucturally simpleu(}:ut—off scheme of the
BMPC estimator

ap(w) w € Ap

P(wlh) = { Bu(w) w € By

vr P(w|h) else

where

An ={w € V |y P(wlh) < an(w)},

B := {w € V| ya P(w|h) > Br(w)}.

This means that the a priori distribution P(-|h)
is scaled by an appropriate positive factor v, if the

1‘Best Model Perturbation within Confidence’. The

suggested pronunciation is ‘bempac’.
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result fits into the confidence intervals. In cases
where it does not fit, the value is cut off to the
nearest interval boundary.

Of course the parameter v, has to be chosen so
as to assure that the estimator sums up to 1 which
leads to:

DY

’we.AhUBh

pwh)=1- > an(w)— > Bu(w)

wEAp wEBy,

Because 4, also appears in the definition of Ap,
and Bj, we are faced with a fixed point equation
which can be solved using standard techniques.
For each history h, the interval boundaries
ap(w), Br(w) are determined with respect to some
level of confidence for each word w under the as-
sumption that the appearance of each event (h, w)
is governed by a binomial distribution. To avoid
any free parameter the level of confidence is cho-
sen to minimize Cp while making sure that the rela-
tive frequency distribution is within the constraint
set. Confidence intervals for the binomial distribu-
tion, which are quite well-known (and sometimes
called Pearson-Clopper intervals), can be explic-
itly expressed in terms of the F-distribution (cf.
Lehmann [2] pp. 199ff and the appendix) which is
available in most mathematics libraries.

3. THE RESULTS

For the tests presented in the rest of the Section,
we used bigram estimators, which means that for
histories ending with the same word, the same con-
ditional distribution was used. In the case of an
unseen history (i.e. an unseen predecessor word
within the adaptation material) we used a con-
ditional distribution derived from the background
data.

In order to evaluate our new estimator, we per-
formed tests on real-life data supplied by US ra-
diologists. These tests were performed using the
following strategy :

1. Start with an initial model obtained on back-
ground data from one hospital location (not
including any of the speaker data).
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2. Recognize one utterance using the current
model.

3. Obtain the corrected text of the recognized
utterance. Add it to the text accumulated
so far and train a standard speaker-specific
language model on this adaptation material.
Build a new model using the one just trained,
the initial one, as well as the confidence inter-
vals calculated on the adaptation material.

4. Go to step 2.)

To build the new model mentioned in step 3,
we first combined the initial model and the con-
fidence knowledge by using BMPC. As a sec-
ond way of combination we chose standard lin-
ear interpolation (LI) of the initial model and
the speaker-specific model. Furthermore this
LI model was additionally combined with the
speaker-specific confidence intervals, which is re-
ferred to as LI+ BMPC.

As opposed to BMPC, which does not know
anything about the test material, the free weight-
ing parameter of the linear interpolation was cho-
sen so as to minimize the perplexity of the test set
(which of course gives overly optimistic results).

Results are shown in Table 2 where the upper
half gives word error rates and the lower half shows
perplexities. The ‘baseline’ column always shows
the word error rate obtained with the background
material only, i.e. without any adaptation.

It can be seen that the use of BMPC leads to a
consistent improvement, performing essentially as
well as the test-optimized LI or the combination
of both LI and BMPC without the need of any
additional adjustment of free parameters.

As far as perplexities are concerned, LI clearly
outperforms BMPC. However, by applying BMPC
in addition to LI it is possible to further reduce
perplexities by 23% on average, while the word
error rate remains roughly the same (2% reduc-
tion on average). Once again this indicates that
perplexity is not always a reliable measure when
comparing the performance of different language
models (cf. [1]).
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| Speaker || #Utterances | #Words |

m80 13] 3,962
m81 71 5,743
m90 21 1,922
£95 50| 6,039
BG 166 | 115,172

Table 1: Sizes of adaptation and background ma-
terial

| Speaker || Baseline [ BMPC| LI [LI+BMPC |
m80 155% | 12.3% [12.2% | 11.8%
m81 31.3% | 28.0% [27.7% | 27.4%
m90 18.4% | 15.8% | 16.2% | 16.0%
f95 194% | 163% [ 17.3% | 17.1%
[Aver. A - [ -15% [-14% [ -15% |
m80 6122 181 166 94

m81 4542 548 | 254 227
m90 966 155 110 77

f95 838 141 67 60
{Aver. A - ] -88% [-93% [ -94% |

Table 2: Test results (upper half: word error rate;
lower half: test set perplexity )

4. THE CONCLUSION

From the tests we performed it appears that
BMPC is a robust way to improve background
models and to adapt them to small amounts of
speaker-specific data. As compared to linear in-
terpolation, there is no need to optimize free pa-
rameters and in fact when used in addition to
LI, BMPC has the ability to compensate for sub-
optimal parameter settings.
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Appendix

Depending on the level of confidence 1—¢ the confi-
dence interval [ae(k, N), Bc(k, N)] associated with
an event occurring exactly & times in a series of N
independent samples assures that for all p € [0, 1]
we have '

Pp({ke{o')aN}|ac(k5N)SpSﬂe(k’N)})Z 1-¢

where p denotes the probability that w is drawn
after history h.

Thus ap(w) and Bx(w) depend only on the counts
N(h,w), N(h) and a free parameter e if we
set ap(w) = a(N(h,w), N(k)) and Bp(w) :=
Be(N (h,w),N(h)). Its well-known and easy to
verify that a.(k,N) and B.(k,N) (sometimes
called the Pearson-Clopper intervals) can be ex-
plicitly expressed in terms of the F-distribution as

Qe (k, N) =
0 k= 0
EFak2(N—k+1), %
(N=FF D) +RFor 2(v_h41), 5 ke{l,...,N}

and

Be (k, N) =
{ (k+1)Fo(x41),2(v—k),1- §

(N=RE)+(E+1)Fo (k1) 2(v—k),1- §
1 k=N
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ke{0,...,N -1}

Here F,, ,, , is defined as a quantile

Fn,m,q
L fm(e)d =

with respect to the probability density function
(cf. [2], pp. 199ff)

= (3) (3) Hrh e

For practical use, we choose the free parameter € as
the maximal one such that the relative frequencies
NNh;:” are still assured to be within the interval
[ae(N (h,w), N(h)), Be(N (h, w), N(h))]. Since this
also makes sure that Y~ a.(N(h,w), N(h)) <1<

> Be(N(h,w), N(h)) for all histories h, it can be

shown that there is a non-negative solution for ;.
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