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ABSTRACT

The class of K-Testable Languages in the Strict Sense
(K-TLSS) is a subclass of regular languages. Previous works
demonstrate that stochastic K-TLSS language models de-
scribe the same probability distribution as N-gram models,
and that smoothing techniques can be efficiently applied
(Back-off like methods). Once we have a set of k-TLSS
models (k= 1... K) and a smoothing technique that specif-
ically fits in them, here we propose an integration into a
unique self-contained model (the K-TLSS(S)) which em-
beds the smoothing within the topology allowing extremely
simple parsing procedures. To build this model we designed
a more general syntactic mechanism that we call Stochas-
tic Deterministic Finite State Automaton with Recursive
Transitions. The topology of the new models (K-TLSS(S))
allows an easy pruning procedure. Pruned K-TLSS(S) mod-
els give probability distributions that are equivalent to Vari-
able length N-gram models. Experimentzal results gave as
a conclusion that the effect of a small pruning is always
positive.

1. INTRODUCTION.

In 1991, talking about Language Modeling, Jelinek said:
“...after all the solid progress in speech recognition, the
trigram model remains fundamental” [1]. Basically, the va-
lidity of this statement continues today, so while the search
for new improved methods persists, it would be worth it to
make advances in the application of the N-gram model.

In this way, we paid attention to the fact that the prob-
ability distribution given by an N-gram model is strictly
equivalent to the distribution determined by a stochastic
grammar for a certain subclass of regular languages called
K-Testable Languages in the Strict Sense (K-TLSS)[2]. So,
the benefits of the well structured computational framework
of Formal Language Theory can be applied instead of the
classical N-gram procedures. In this way, an automaton can
be inferred from the training set for a given value of X [3]
(K stands for the same meaning as N in N-gram). In section
2 this aspect is formalized.

Nevertheless, the application of an automatically learned
Language Model to a Speech Recognition task requires a so-
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lution to the “lack of samples” problem [4]. A way to give a
solution to this problem for the proposed syntactic approach
consists of the translation of the solutions developed for the
N-gram approach. In [5] this issue is studied and a smooth-
ing technique called “syntactic Back-off” is proposed. The
origin of this technique is the classical Back-off introduced
for N-grams in [6]. The mathematical expression for this
smoothing is shown in section 3.

Once we have different k-TLSS models (k =1...K) and
a smoothing technique that specifically fits in them, here we
propose an integration into a unique self-contained model
(the K-TLSS(S)). To build this model we designed a syn-
tactic mechanism (the Stochastic Deterministic Finite State
Automaton with Recursive Transitions - SDFSART) which
is explained in section 4 and applied to construct the K-
TLSS(S) models in section 5.

Section 6 explains how this new method allows an easy
pruning step as a natural part of the construction of the
model. The probability distribution provided by these mod-
els issimilar to that of the Variable length N-grams[7]. Some
experimental results were obtained with these models re-
vealing that a moderate pruning should always be done.

2. K-GRAM MODEL AND K-TLSS
LANGUAGES.

The SDFSA for a K-TLSS is described by the quintu-
ple (X,Q¥, 6%, g0,9s) where, in terms of word chains (N-
grams):

o ¥ is the vocabulary inferred from the sample.

¢ Q¥ is a set of states. Each state represents a word
chain of length up to K — 1. There is one state in
QX for each word chain shorter than K — 1 starting
the sentences of the training text (including the null
string). For each word chain of length K — 1 in the
whole training text there is also one state in Q.
6% is a stochastic transition function (6% : D — Q¥ x
[0,1]) where D C Q¥ x (ZU{8$}) and § is an (internal)
symbol. Each word chain shorter than K starting a
sentence in the training text wi—ns1...wii T Wiy,
defines a value for §%:

6x(“’:::+1!“"') = (Wi-kt1s P(“""“’::II.H)) k<K
where P(w|Q) is the estimated probability for a word
w to appear after the string Q.
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Each word chain of length K in the whole text also
defines a value for §%:

6K("";-—K+1lw‘) = (wt—K+2: P(w'lw;_k+1))

Finally, for each state whose associated word chain
ends a sentence in the training text:

6K("’::ll.+1a $) = (q;,P(S]w::,l.H))

In this case, P($|0) is the estimated probability for the
string 2 being at the end of a sentence.

k<K

® go is the initial state. This is the state associated to
the null string.

® gy is the final state.

3. SMOOTHING THE K-TLSS PROBABILITY
DISTRIBUTION.

In [5] a back off smoothing method for K-TLSS models is
proposed and a simple mechanism to implement it as part
of the training procedure is developed.

Each state of the K-TLSS automaton, ¢, has an associate
alphabet, ¥, formed by all the words seen when it was at
g. The final equation smoothes the probabilities based on
a lower level model (k-1)-TLSS in the following manner:

. Conn ifw ez,
P(w|g) = 221 Plwlq®) :
STy BT ifw ¢ I

where C(w/q) is the counter for w in the state ¢, C(q) is the
total count for the state (Ewez, C(wlq)), and |X,] is the

number of words in 2,. P(wilg*) is the estimated proba-
bility given by the (k-l) TLSS model to the same situation
(that is, if ¢ = w'_,,_H then ¢* = ""—h+2)

4. THE SDFSART: A SYNTACTIC MACHINE.

The previous scheme allowed the parsing of new sentences
based on a set of K automata that must be run in parallel.
It would be better to have only one automata whose tran-
sition function domain were the whole D = Q¥ x (ZU{$}).
But this implies the expansion of the learned §¥ to all the
words at each state applying the smoothing function, which
is clearly prohibitive in terms of spatial efficiency.

A new kind of automata can be defined to simulate a
complete §% function (without the expansion) by means
of a recursive behaviour. That is what we call SDFSART
(Figure 1).

The SDFSART is described by the
quintuple (Z,Q*,0R, qo0,¢qy), where ¥,q0, and gy are the
same defined in section 2, Q* is the union of all the sets of
states Q® of the separate k-TLSS automata, and SR is the
recursive transition function explained below:

SR =(6R,,6R,): Q" x (EU{8}) = Q" x[0,1]
that is:

R, : Q@' x(ZTu{s})—-»@qQ
§R, : Q' x(ZU{8}) - Q" x[0,1]
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Figure 1. SDFSART models are automata where transitions
can go through some states. When the word w appears being at
gj the state q; is reached by means of crossing g4. This behaviour
is due to the transition function (§R) which is composed of an
explicit transition function (§X) and a recursive strategy.

The definition of §R is (an implementation of this func-
tion is shown in Figure 2):

§X(q,w ifw € Xg
6R(q,w) = { (512(?(1,,?.;), §Xp(q,U)SRp(p,w)) ifw ¢ Ig

with p = §X,(q,U)

which is based on 6X, an ’extension’ of the §* (k=1..K)
functions given by the union of all these §* and the addition
of one (internal) extra symbol to the alphabet axis of the
dominion:

§X = (6X.,6X,): Q* x (SU{S}U{U}) — Q* x [0,1]

function §R(state,word):stateandprob
var output, tmp :stateandprob
begin
if3 6X(state,word)
then return §X(state,word)
else
begin
tmp=6X (state,i()
output=§ R{tmp.state,word)
output.prob=tmp.prob X output.prob
return output
end
end

Figure 2. The recursive function 6R is based on §X, which
is a direct data extraction from a 'sparse matrix like’ structure.
The recursive function is shown for the sake of clarity, but a
more efficient non-recursive function is clearly straightforward
obtained from this one.

The values given to §.X,(g, ) allow for a word w not seen
in g, the transition to a different sub-model (to the state p).

The function §X can be seen like a sparse matrix, and
stored in a very efficient way related to this kind of struc-
tures. Moreover the access can be optimized attending to
the values of the probability part of the function.
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The SDFSART must assure that, for each state and each
word in T U {$}, there is a destination state and that the
stochastic condition meets:

Y. X(gw)=1
Vwe(BuU{s})
5. K-TLSS(SMOOTHED) AS A SDFSART.

For the smoothing formula in section 3, is easily proved that
the stochastic condition is fulfilled when:

1Zq| 1
ClA)+ 124 1=, eq, Pe'le*)

Vge @'

§Xp(q,U) =

To assure that for each state and each word in X U {8}
there is a destination state, some properties can be estab-
lished. Nevertheless, we are interested in the application of
the SDFSART to solve the integration of our K-TLSS into
a unique smoothed model (the K-TLSS(S)), and the pro-
cedure developed meets this requirement by construction.
This procedure starts building the K levels trie whose level
l is formed by nodes associated to word chains of length I
(see Figure 3(a)). After that, as a second step, the start-
ing sequences are separated obtaining two tries; one node
for each non-leaf node is added; and one probability is as-
sociated to each node attending to the chosen smoothing
formula. As a third step, one transition for every node in
the whole siructure is added transforming the original trie
structure into a graph with the topology of the K-TLSS(S)
(Figure 3(b)).

Figure 3. To build the K-TLSS(S), a trie is extracted from the
sample text (a) and, after that, a process is applied to transform
it into the adequate topology.

The K-TLSS(S) topology matches with the one reported,
for the bigram level, in [8], and with the posterior gener-
alization given in [9]. In the latter work, allowing null-
transitions, it is always possible to reach one state assigning
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a probability for the next word. So, it is a non-deterministic
automaton giving an alternative probability distribution to
the N-gram model. The SDFSART provides the mecha-
nism to perform a deterministic analysis giving exactly the
same results as the N-gram model in a compact, robust and
efficient manner.

6. PRUNING THE K-TLSS(S) MODELS.
EXPERIMENTAL RESULTS.

The K-TLSS(S) has been proven to present the same per-
formance as the separated K-TLSS models in terms of Per-
plexity for a test set. Effectively, the results presented in
[5] 2pplying the back-off in section 3 were reproduced with
this model.

procedure prune_ KTLSSS (KTLSSS,threshold)

var actual_node: Tnode

begin

V actual_node of the trie proceeding in width

if not erased(actual_node) and

probability(actual_node)<threshold
then A
mark_erased_subtrie(actual_node)

pack_KTLSSS(KTLSSS)

end

Figure 4. The pruning procedure (Proc D in Figure 5).

Nevertheless, one of the strengths of this model is that
the pruning can be easily performed, with complete disre-
gard for the automaton structure, like the pruning of a tree
(see Figure 4), if the third step of the construction proce-
dure is re-applied (see Figure 5). Some pruning experiments
gave as a result that a small pruning is always positive for
the performance of the model. So, to build a K-TLSS(S),
the pruning procedure must always be applied.

Training

K-TLSS(S)
equiv. to
Yariable N-GRAM

K-TLSS(S)
equiv. to
N-GRAM

Figure 5. The building process for a K-TLSS(S) should include
a pruning step on the trie (proc D) prior to the trie to_automaton
transformation (proc C).

The pruning applied consisted of eliminating those states
with a probability under a certain threshold. The proba-
bility of a state is efficiently obtained applying through the
trie the recursive expression:

Pe) = Piti,)=
P(W.'—1|w;::+1) X P(U:::+1) =
§Ro(gs,wi—1)P(q,) with ¢, = father(g.)
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The experiments were carried out over a corpus (BD-
GEO) consisting of 9150 sentences. BDGEO is a task-
oriented Spanish speech corpus [10]{11] with 82000 words
and a vocabulary of 1284 words. It consists of a set of
Natural Language (spontaneous) queries to a Spanish geo-
graphic database. This i8 a specific task designed to test
integrated systems (acoustic, syntactic and semantic mod-
elling) in automatic speech understanding.

In order to obtain a significant size for the test set a
cross-validation technique was applied [12] selecting in each
partition 9100 sentences for training purposes and 50 sen-
tences for testing. 183 partitions were made in order to
obtain an effective test set composed by all the sentences in
the corpus.

To illustrate the quality improvement obtained, Table 1
and the corresponding Figure 6 present the effect of prun-
ing the models trained from the BDGEO database. The
perplexity of the non-pruned models presents the typical
evolution with K: there is always a value from which the
perplexity increases. This effect is less important and ap-
pears at higher values of K for the pruned models.

Table 1. Perplexity and number of parameters of the K-
TLSS(S) models with and without pruning (corpus BDGEO).
Whole models || Pruned models . A (%)
[K]| Perp. [Param. || Perp. [Param. || Perp. | Param.
3 || 10.691 | 33654 | 10.691 33654 [{ -0.00 | -00.00
4 |/ 10.220 | 76664 || 10.083 61481 (| -1.54 | -29.80
5 |[10.262 | 133653 || 9.9898 | 84661 || -2.65 | -36.66
6 || 10.495 | 203518 || 10.026 | 101635 || -4.47 | -50.06
7 11 10.785 | 279071 || 10.082 | 111730 || -6.52 | -59.96
11.0 T T ~r T T T T T T
- - - - Whole models
10.8F —=a— Pruned models 75m g
10.6} N
2
»
-5_10.4- -
&
102 -
10.0 4
9.8 1 1 1 1 i 1 1 1 1

Figure 6. For any value of K, the best model is obtained after
pruning. This effect allows, for a similar size, an increase in the
value of K and an improvement in the performance by means of
deleting some low-k states and including some more significant
higher-k states.
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