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ABSTRACT

This paper presents a maximumi likelihood joint-space adap-
tation technique for robust speech recognition. In the joint-
space adaptation process, the N-Best hidden Markov model
(HMM) inversion frame-by-frame adapts the speech fea-
tures non-parametrically to compensate the temporal de-
viation, while the models are. transformed parametrically
to catch the global characteristics of the mismatch. The
proposed joint-space adaptation provides a better compen-
sation to the mismatch than either of the single-space adap-
tation does. This algorithm operates only on the given test-
ing speech and the models, therefore no adaptation data are
required. As verified by the experiments performed under
different mismatch environments, the proposed method im-
proves the performance in all the cases without degrading
the performance under the match condition.

1. INTRODUCTION

The performance of automatic speech recognizer degrades
drastically when the recognizer is deployed under the envi-
ronments mismatched to the training environment. From
the perspective of the temporal evolution, some mismatches
cause similar distortion to each frame of the testing speech
and can therefore be formulated as a time invariant map-
ping which can be compensated statically. On the other
hand, some mismatches are varying between frames and re-
sult in a time-varying mapping, thus the dynamic compen-
sation should be incorporated. Due to the random charac-
teristics of the mismatch, an effective mismatch compensa-
tion should be able to both statically and dynamically deal
with the features or models.

Most static and dynamic methods operate only in the
single space, either the feature-space or the model-space.
If the recognizer is tested under severe environments, the
highly nonlinear distortion is difficult to compensate with
only a single-space modification. This motivates the use
of joint-space modifications. In [5], the HMM inversion
which provides a frame-by-frame based feature vector mod-
ification, is combined with minimax approach [4] to model
modification for a joint-space adaptation. Since only the
testing speech and models are required therefore this al-
gorithm can recognige testing speech from most unknown
environments. This method has been successfully applied
to isolated speech recognition tasks. The goal of this paper
is to further extend this joint-space adaptation into contin-
uous speech recognition problems.
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This paper is organized as follows: Section 2 introduces
the extension of HMM inversion procedure for continuous
speech recognition. In section 3, the joint feature- and
model-space adaptation based on this extension is formu-
lated. The implementation issues are also considered. The
experimental results are reported in Section 4. The conclu-
sions are summarized in Section 5.

2, CONTINUOUS SPEECH HMM INVERSION

2.1. EM Algorithm for HMM Inversion

To apply the HMM inversion to the continuous speech
recognition problem, a specified word must be assigned to
each individual frame of the testing utterance. The inver-
sion process estimates the speech feature vectors § by max-
imizing the likelihood of the speech and the word sequence
given the models. With the EM framework, the HMM in-
version for continuous speech is formulated as follow: In the
E-step, the auxiliary function is formed as:

Qs,',W;X) =) Y P(s,6,K|3)-log P(s',6, K|A).

BEW KEW
(1)
In the M-step, the speech is estimated as:

§ = argmax Q(s, ', W; ), (2)

where A represents only the models occurred in the word se-
quence, that is generated from the Viterbi search algorithm
[2] to provide a meaningful target. To each time index, the
state through which the Viterbi path passes dominates the
likelihood among the total likelihood of all states. The word
sequence can be replaced by the most likely state sequence
to serve as the target. The estimated speech & can thus be
derived as:

~ !
8 = arg rglgg{ars max P(s,s’,v|A)}. (3)

This highly reduces the computational burden. The auxil-
iary function for the state-dependent inversion can now be
restated as:

Q(s,8',v;2) = Z P(s,K|))-log P(s",K[2), (4)

xev

where v is the Viterbi state sequence. By equating the
derivative of Q(s,s’,»;A) with respect to a’; of each time
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index to be zero, we can find the reestimated input s's:

aQ(sé::: v;A) = Z P(s,K|A)- Z log bu.n(s's)

KEV

=‘ Z P(se,ve, k|X) - Ru,k ('s — puyn)
k=1
= o, (5)

where b,,,4(-) denotes the observation probability of the k-
th mixture at the v;-th state, R,,. denotes the covariance
matrix of the k-th Gaussian mixture in the v;-th state. The
mixture dependent probability of the state v; in each time
index t is represented as:

P(8¢,ve,k|A) = cupnbuya(s:)- (6)

Assuming that the covariance matrix Ris is diagonal, &
can be solved element-by-element and the 7-th element is
obtained as:

do(7) = Zf=1 c”thbvch(’t)l‘wh("')/'n’qh("')

E:{—l cl’c’!bl’:"(’l)/rz.h(‘r)

where 72 ,(7) is the 7-th element on the diagonal of the co-
variance matrix R, Proper constraints must be imposed
to confine the movement inside the mismatch neighborhood
to avoid the affine phenomenon [5]. '

2.2. N-Best Search for HMM Inversion

The HMM inversion process moves the feature vectors closer
to the weighted average of the mixture means of their cor-
responding target states, therefore the state sequence gen-
erated from the modified speech in the new search will still
be the same as the original one, only with higher likeli-
hood without correcting the mistakes made in the initial
search. Due to the high confusion created by the mis-
matched speech, the most likely state sequence derived from
the Viterbi search actually contains misrecognized words.
Instead of solely relying on the initially searched word se-
quence, we apply the N-best search algorithm to find the
N most likely word sequences [8]. These different sequences
provide alternative choices to the confusion parts of the
speech. Therefore, it offers N different target sequences for
the HMM inversion to compensate the mismatches. The
N-best HMM inversion algorithm can be summarized as:

w =

v (M

1. Choose the top N likely word sequences:
{Ww, ... oW L Wiy,

2. Perform the HMM inversion to each word sequence to
find the estimated speech, respectively:

5(m) — rlnd. Al
8 arg rggg P(s,s’, ; )

and record the new joint likelihood, P(&(™), W(™|A(m),
of the n-th sequence after the HMM inversion, where
™) Jdenotes the models appear in the word sequence
wm),

" 3. Select the one with the highest likelihood among the
hypotheses to be the winning sequence:

W* = arg max P(8(™, w{m|a(™),
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3. JOINT MODEL AND FEATURE SPACE
ADAPTATION

The mismatch compensation can also be dealt with in the
model-space. In the model-space compensation, we con-
sider to compensate the "global” mismatch statically. Since
only the testing speech is available, a simple linear trans-
form of the Gaussian means of the mixtures based on a
diagonal matrix H for scaling and a bias vector f for shift-
ing, i.e., i = H-p+f, is considered. The parameters {H, f}
can be solved by adopting the EM algorithm [3]. However,
under severe testing environment, the mismatch is difficult
to be caught by a simple transformation. We further utilize
the the N most likely paths to the model adaptation. With
each hypothesized word sequence, the sequence dependent
transformation is estimated and models are adapted with
this transformation. The likelihood of testing speech given
this word sequence is re-evaluated based on the modified
models. The sequence resultmg in the highest likelihood is
the winner.

Although the model-space adaptation technique has been
reported to adapt the model parameters efficiently [7], it
cannot compensate the deviation in the temporal continu-
ity in fine details. On the other hand, HMM inversion pro-
vides the ability to adaptively compensate the mismatch
speech to the fine details of the continuity. To reach a bet-
ter compromise, the model transformation is combined with
the HMM inversion so that a joint-space adaptation can be
achieved [5]. In this joint-space adaptation technique, the
auxiliary function Q(s,s’;A,A’) is jointly maximized with
respect to {s, A}.

Q850 X) = 3" 3" P(s,6, K1) - log P(s', 8, K|)), (8)
X

where s and s’ denote the sequences of original and mod-
ified speech features in the speech feature-space S, and A
and )’ denote the old and new model parameters in the
model parameter space A. The optimization problem is
to find {8, A} that maximizes Q(s,s’;A,A") in the joint-
space of {S, A}. In practice, the close form solution is dif-
ficult to solve. Hence, it is approximated by maximizing
Q(s,s'; A, )') with respect to one space at a time, i.e., each
space is independently optimized. The independent opti-
mization for each space is then combined in a sequential
manner. This joint-space adaptation procedure is summa-
rized as follows:

1. Choose the to§) N hkely word sequences: W =

{w) ... win N AN
2. Perform the joint-space adaptation to each candidate
word sequence.

(a) Perform the model adaptatlon with respect to each
word sequence win
A" =—arg max PO, A W), g)
A(m)eA(n)

where A{™ denotes the models occurred in the word

sequence W™ A(™ denotes the mismatch neigh-
borhood of A(™).
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(b) Perform the HMM inversion with the modified
model A(™, to find the estimated speech:

aln) r win), i(n)
8 _argggP(s,s,W ;A

(c) Go back to step (a) unless some preset requirement
is fit.

(d) Record the new joint likelihood for the n-th se-
quence: P(8("), W(™|i(™). Note that the ordering
of Step (a) and Step (b) can be reversed.

3. Select the sequence with the highest likelihood among
the N hypotheses to be the winning sequence:

W* = arg max P(3(™), w{™|A(™),
Some implementation issues are considered following:

Robust Scaling Factor: Although the robust constraint
imposed on HMM inversion relaxes the adverse effect caused
by the affine phenomenon, the temporal continuity of the
testing speech can be destroyed by extensive movement of
HMM inversion. To lessen the affine phenomenon, a static
compensation by multiplying a constant to every frame of
the noisy speech feature vectors before applying the modi-
fication is incorporated. This pre-scaling procedure enables
the original temporal continuity of the testing speech to be
preserved as much as possible after HMM inversion. The
scaling factor ¢ is computed as:

5. Sl .
U el ©

where p: is the mean vector of the Gaussian which is closest
to the feature vector s; in that state which the Viterbi path
passes through.

Cepstral Mean Subtraction (CMS) The CMS [1] was
originally proposed for removing the bias vector caused by
the convolutive corruption. However, the distribution of
cepstral coefficients is also disturbed by the additive noise.
It was observed that the means of the distribution of the
cepstral vectors shifts under additive white Gaussian noise
environments [6]. By incorporating of the CMS, which is
regarded as a static compensation "before” any of our pro-
posed methods, the bias could be globally reset without
disturbing the temporal continuity of the testing speech fea-
tures and improve recognition results.

4. SIMULATION RESULTS

The database used in the experiment is the adult-male part
of the TI connected digit corpus. The vocabulary are 10
digits, 0,1,---,9, and o. The lengths of the sequences vary
from one to seven, without six. The database is divided
into training and testing part by the distributor. All the
sequences in the training part, uttered by 55 speakers with
total 4235 sequences of all lengths, are used for training. In
the testing part, there are 56 speakers. We only choose the
7-digit sequences with total 615 sequences for testing.
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" The digitized strings were sampled at 20 kHz. In our
experiments, the digit sequences are first filtered by a low-
pass filter with cutoff frequency 4KHz, then downsampled
to 8KHz. The downsampled speech is pre-emphasized with
the filter coefficient 0.97 then blocked and Hamming win-
dowed into frames with 32-ms long and 16-ms overlap. For
each frame, a 39-dimensional feature vector is extracted:
12-order LPC cepstral coefficients, 12-order delta cepstral
coefficients, 12-order delta-delta coefficients, a log-energy
coeflicient, a delta-log-energy coefficient and a delta-delta-
log-energy coefficient. The cepstral coefficients are weighted
by the band-pass lifter window with order 12. Each digit
is modeled by a single hidden Markov model. The struc-
ture of all HMMs are the same: 8-state left-to-right model
with non-skip transient probabilities, 5 mixture Gaussians
in each state. The long silence at the head and tail of each
string is removed. No silence model is incorporated to cope
the silence between digits. In our experiment, the string
length is assumed to be known. To evaluate the perfor-
mance, both the string and the word accuracy are computed
by HResults in HTK1.3 [9].

Various types of corruptions are conducted to the test-
ing speech. These include additive white Gaussian noise
{AWGN), additive jittering white noise (AJWN), and sim-~
ulated microphone mismatch (SMM) [5]. With AJWN cor-
ruption, half of the all frames are corrupted by the non-
stationary noise. In SMM environment, the degradation of
the microphone mismatched speech is different in different
frequencies.

There are several methods compared against each oth-
ers: the no compensation (Standard), the N-best inversion
for feature-space adaptation (N-best Inversion), the affine
model adaptation for model-space Gaussian-mean adap-
tation (Model Adaptation), and the iterative joint-space
adaptation based on N-best and Model Adaptation (Joint).

Theoretically, all the elements in the feature vectors and
the means of Gaussian mixtures need to be adapted during
the compensation. In our experiments, only the cepstral
and delta-cepstral coefficients are modified and the rest of
15 coefficients are left intact since the cepstral and delta-
cepstral coefficients are more discriminative among all coef-
ficients. In our experiments, the constants of the mismatch
neighborhood [4], I = {s(7) — R7™'p",s(r) + RT~'p"}, of
the r-th cepstral coefficient are chosen to be R = 1 and
p = 0.3. The mismatch neighborhood of each coefficient is
weighted with the corresponding bandpass window used for
bandpass liftering. The radii of the mismatch neighborhood
of the delta-cepstral coefficients are chosen to be the same as
that of the cepstral coefficients, since the delta-coefficients
are derived from the cepstral coefficients.

Table 2 shows the recognition performance when the test
speech is corrupted by AWGN at different SNRs. The first
column of each SNR shows the string accuracy while the
second column shows the digit accuracy. All the results
shown below have included robust scaling and CMS pre-
adaptation. In the N-best inversion, the best “10” candi-
date strings derived from the N-best search [8] are used in
the experiment. The string accuracy degrades to 54.63%
at SNR of 20 dB without any compensation. For the
single-space adaptation, the model-space adaptation per-
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String accuracy | Digit accuracy
Standard 95,93 99.30
CMS Alone 95.77 99.30
Joint 95.93 99.33

Table 1. HMM performance of clean test speech.
Recognition rate is on percentage.

SNR(dB) 20 30 40
Standard 44.23 87.34 79.02 96.05 89.59 98.14
CMS Alone 54.96 89.94 83.41 96.68 90.08 98.75
N-best Inversion 62.38 91.53 86.67 97.31 932.68 98.63
Model Adaptation 632,44 91.60 86.83 97.14 93.50 98.72
Joint 66.67 93.31 88.46 97.58 93.66 98.79

Table 3. HMM performance under AJWN noise
environment. Recognition rate is on percentage.

SNR(dB) 20 30 40 SNR(dB) 20 30 40
Standard 54.80 90.34 82.60 96.72 92.85 98.88 Standazd 46.67 86.64 78.70 95.42 92.20 08.51
COMS Alone 64.58 93.66 86.99 $7.28 $3.01 98.68 CMS Alone 59.02 91.41 85.04 97.00 93.52 98.47
N-bost Inversion 70.08 93.45 87.18 97.30 93.01 98.70 N-best Inversion 64.38 91.82 85.04 96.89 92.85 98.53
Model Adapiation 71.54 93.64 87.80 97.47 93.98 98.78 Model Adaptation 67.32 92.30 85.36 97.08 93.85 98.61
Joint 77.07 94.60 89.89 97.78 94.31 98.86 Joint 69.11 93.68 87.32 97.32 93.98 98.82

Table 2. HMM performance under AWGN environ-
ment. Recognition rate is on percentage.

forms better than the feature-space adaptation. It is due
to the potential deviation of the temporal continuity caused
by HMM inversion process when too much fine-detail move-
ment is required. This is consistent with the observation [7]
that model-space adaptation achieves better error reduction
than feature-space adaptation does.

In the joint-space adaptation, normally three iterations
are enough to compensate the mismatch. In addition, in or-
der to evaluate the influence of these processes under match
condition, the clean testing speech are also tested with these
adaptation techniques. The results are given in Table 1.

Table 3 shows the recognition performance when the test-
ing speech is corrupted by jittering noise. Due to the highly
random behavior of jittering noise, the HMM inversion per-
forms poorer than model-space adaptation in high SNR
cases as observed in the AWGN case. In such cases, different
mismatch neighborhoods are necessary, this calis for a po-
tential future research topic. However, the joint-space adap-
tation still shows significant performance improvement. Ta-

ble 4 shows the recognition performance when microphone

mismatch is encountered at various SNR levels. Since the
noisy speech is corrupted by the convolutive filter, the in-
corporation of CMS greatly reduce the mismatch especially
in low SNR case. Again, it shows that the joint-space adap-
tation performs better than single-space adaptation.

5. CONCLUSION

In this paper, the joint-space adaptation technique for ro-
bust continuous speech recognition is presented and eval-
uated. This technique is found to be effective in compen-
sating mismatches under different operation environments
and greatly improves the performance of recognition. In
our proposed method, only the testing speech is needed to
adapt the models, in the meantime itself is adapted to re-
duce the mismatch. Thus, this technique can be performed
without any adaptation or stereo data. It is particularly
suitable to operate in the fast changing or unknown field en-
vironments. Experiments show that the proposed algorithm
improves the performance under different mismatch envi-
ronments. In the match environment, it performs equally
well. .
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Table 4. HMM performance under SMM environ-
ment. Recognition rate is on percentage.
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