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ABSTRACT

In noisy listening conditions, the information available on which
to base speech recognition decisions is necessarily incomplete:
some spectro-temporal regions are dominated by other sources.
We report on the application of a variety of techniques for missing
data in speech recognition. These techniques may be based on
marginal distributions or on reconstruction of missing parts of the
spectrum. Application of these ideas in the Resource Management
task shows performance which is robust to random removal of up
to 80% of the frequency channels, but falls off rapidly with dele-
tions which more realistically simulate masked speech. We report
on a vowel classification experiment designed to isolate some of
the RM problems for more detailed exploration. The results of this
experiment confirm the general superiority of marginals-based
schemes, demonstrate the viability of shared covariance statistics,
and suggest several ways in which performance improvements on
the larger task may be obtained.

1. BACKGROUND

The missing data problem arises naturally in many pattern recog-
nition tasks [2,8] where elements of data vectors to be classified
are unavailable during training and/or recognition. The causes of
incomplete evidence include unreliable sensors, band-restricted
data transmission (e.g. the spectral filtering action of a telephone
channel), or partial occlusion of the desired pattern by an interfer-
ing signal. In the latter case, it is assumed that some preprocessor
is able to determine which parts of the mixed observation corre-
spond to the source to be classified.

Our motivation for studying the missing data problem derives
from ongoing studies at Sheffield and elsewhere [1] on computa-
tional auditory scene analysis (CASA), in which evidence for dif-
ferent sound sources is separated using auditory grouping
principles. CASA is an attractive paradigm for robust ASR. It
makes no assumptions about the type and number of acoustic
sources which make up the mixture, and does not require prior
exposure to these sources. However, separation will never be able
to recover all the evidence: there will be some regions where other
sound sources dominate. CASA-based robust ASR requires that
the resulting missing data problem be confronted.

In previous work [4,9] we demonstrated that it is possible to
remove high proportions (up to 90%) of the input spectrum with-
out significant deterioration in recognition rates. In ICASSP-95,
we reported (using NOISEX) noise tolerance comparable to that
of human listeners when only those spectro-temporal regions with
a favourable local SNR were retained. Subsequently, we have
applied missing data techniques to the Resource Management
(RM) task [5]. The main results of that study are outlined in sec-
tion 3 of this paper. The RM experiments highlight a number of
outstanding problems with the practical application of missing
data ideas. Here, we address these issues with a more focussed
problem, that of TIMIT vowel identification using a Gaussian
classifier (section 4). This task allows for a comparison of missing
data techniques which would have been computationally infeasi-
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ble on RM, and decouples the observation probability estimation
problem from the problem of finding the best model sequence.

2. MISSING DATA TECHNIQUES FOR
MULTIVARIATE GAUSSIAN DISTRIBUTIONS

Missing components of pattern vectors can either be estimated or
ignored. Estimates assume an importance in situations where
reconstruction of the data vector is required, possibly for further
processing (e.g. further pattern transformation prior to classifica-
tion), or for regeneration (e.g. resynthesis). Ignoring missing data
means attempting to classify the observation solely on the basis of
the information present. It has been argued [2] that it can be inap-
propriate to replace missing values with any estimate.

Both kinds of approach benefit from some model for the process
giving rise to the observations. Here, we assume that the observa-
tion vector x belongs to one of a number of classes, each of which
is modelled as a mixtur'c(: of K multivariate Gaussian distributions:
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The missing data problem for pattern classification is the compu-
tation of fix} S ) for an incomplete vector x. It will be convenient
to re-order xas x = (x,x,), where Xp and x,, represent, respec-
tively, the subvectors of present and missing components. To sim-
plify things further, we will drop model subscript j and present the
required formulae for the single mixture condition. All arguments
presented here are applicable to the multiple-mixture case.
The mean and covariance matrix are similarly partitioned:
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One simple estimation technique is to replace missing values by

unconditional model means (so-called mean imputation) i.c.

X, =W, 4)

This approach makes no use of present components and hence
cannot exploit information in the covariance. An alternative is to
calculate model means conditioned on those components present.
For multivariate Gaussians, this conditional distribution is also
Gaussian [12], with mean and covariance:
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For unconditional and conditional mean replacement techniques,
classification proceeds by computing
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respectively — that is, the probability of the reconstructed observa-
tion conditioned on the modeli. The conditional covariance can be
used to indicate the certainty of each missing component.

In contrast, classification on the basis of X, alone can be
achieved using the marginal distribution, Sixp), which is particu-
larly simple for multivariate Gaussians, since any marginal of a
Gaussian is itself Gaussian. In our case, we estimate
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Missing data techniques represented by (7), (8) and (9) form the
basis for the studies reported here. Unfortunately, application of
the more principled (8) and (9) in CDHMM ASR is computation-
ally intractable due to the need to compute the inverse of C,, for
each frame and for each active emitting state. In a typical triphone-
based system like the one we report on in the next section, there
may be several thousand active states.

Several ways to sidestep this problem exist. One is to use diago-
nal-only covariance, for which the inverse is formed by simply
reciprocating the diagonal elements of C,,. However, the underly-
ing assumption of componentwise independence for filterbank
energies is unjustified. Further, transformation via PCA or DCT to
achieve exact or approximate independence is not possible for
incomplete observations. Another method is to use a single com-
mon covariance matrix shared by all states of all models. These so-
called grand covariance schemes have been used for both robust
and normal ASR and offer several advantages. Covariances can be
estimated from the whole data set, and thus provide more reliable
estimates. The overriding benefit for us is computational: a com-
mon covariance requires a single matrix inversion for each frame
of processed data, rather than an inversion for each HMM state.

3. EXPERIMENTS WITH RM

The HTK HMM Toolkit [13] was adapted for the missing data
methods described in section 2. Three-state, single mixture triph-
one models were trained conventionally on clean speech from the
RM corpus parameterised by a filterbank energy acoustic repre-
sentation, and tested in various missing data conditions using the
RM feb89 test set. For details of the results, see [5]. In summary,

1.Unconditional mean imputation generally performs badly.

2.For random deletions, both marginal and condition mean tech-
niques hold up encouragingly well: word accuracy does not fall
significantly until around 80% of each observation vector is
removed. This result resembles the performance we have
obtained in smaller tasks [4,9], is similar to that reported in other
domains [2] and is all the more remarkable because of the sim-
plifications we made to expedite processing: a fixed global cova-
riance and, in the conditional mean case, a fixed global mean.

3.For more realistic deletions based on local SNR (i.e. add noise to
the clean speech and retain only those channels where local SNR
is favourable; see [9]), results for both marginals and conditional
reconstruction were much worse: with a global SNR of 20dB,
marginal estimation gave an accuracy of 19%, compared to 78%
for the equivalent random deletion case.

4.The key difference between random and SNR-based deletions is
in the distribution of missing data across time and frequency. To
study this effect, we tested the performance of the system in the
face of randomly-deleted blocks of spectro-temporal energy, a
situation which crudely approximates that which is seen in the
local SNR case, but allows us to control the deletion block size.
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We found that removal of contiguous spectral regions is far more
harmful than removal of contiguous frames in a narrow spectral
region, and that removal of sizeable spectro-temporal blocks
leads to quite a sharp decrease in recognition rate for the same
overall deletion rate. For instance, with a fixed overall deletion
rate of 80%, word accuracy for conditional reconstruction was
around 55% when removing blocks of 10 frames by 1 channel
but 25% with blocks of 10 frames by 10 channels.
Why do block deletions produce rapid deterioration in recognition
performance on RM? The effect might be due to (i) poor estimates
of observation possibilities or (ii) the way these estimates are com-
bined across time in the Viterbi algorithm, or to a combination of
these factors. We next report on an experiment designed to isolate
(i). In this we attempt identification of vowels from single spectral
slices using a Gaussian classifier, thus eliminating (ii)’s effects.

4. VOWEL SPECTRA CLASSIFICATION

Gaussian classifiers were trained for the eight most frequent vow-
els (TIMIT symbols: aa, ae, ah, eh, er, ih, iy, uw) in the TIMIT
database [7]. Training and test data was taken from all male speak-
ers in dialect regions dr1 to 7 of TIMIT, a total of 2192 utterances.
Two thirds of these utterances, chosen uniformly across speakers,
were used for training. The spectrum was obtained from 32 chan-
nel mel-scaled filterbank energies. A test set was assembled from
spectra for the 3 central frames of vowels in the remaining third of
the selected part of TIMIT.

Baseline performance on non-occluded test data was around
60%, and was insensitive to the choice of acoustic vector (filter-
bank energies or MFCCs), to the addition of overall energy, and to
the number of mixtures in the distributions.

A number of missing data conditions and methods were applied
to this task, including several variants developed from eqns (7)-
(9). Specifically, we addressed two issues:

* s the discrepancy between random deletions and ‘energy-
based’ deletions present at the single-frame level?

* what effect do suboptimal choices of covariances have on
recognition performance?

Additionally, several other forms of missing data simulating the
effect of low, high and bandpass filtering were tested.

4.1. Random versus energy-based deletion

The top row of figure 1 compares the performance of the Gaussian
classifier as a function of missing data technique and spectral dele-
tion type. Four missing data methods were used: unconditionat
mean estimation (eqn. 7), conditional mean estimation (eqn. 8),
estimation using marginals with full covariance structure (eqn. 9),
and estimation using marginals with diagonal-only covariance
matrices. The latter condition was included because it represents a
computationally-tractable approach to the use of marginals (albeit
inappropriate for correlated filterbank energies) and for compari-
son with our previous work. Three forms of spectral deletion were
assessed: ‘pointwise-random’ refers to independent random dele-
tion of spectral components; ‘energy” denotes removal of spectral
regions with low energy (and roughly corresponds to the SNR-
based deletions of section 3); ‘random blocks’ means the random
removal of spectral regions. In the latter case, the spectral blocks
deleted had the same region size distribution as for the energy-
based deletions. Deletion of blocks at random (for a fixed overall
deletion rate e.g. 50% of the spectrum removed) provides a fair
comparison with deletions based on energy, since the block-based
deletion studies on RM reported in the previous section indicate
that random removal of contiguous spectral regions has a greater
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Figure 1: Vowel recognition scores as a function of spectral element deletion (1.0 = no deletion, 0.0 = all deleted). Key in top left panel
serves for top and middle rows of figure. Top row compares recognition rates for various missing data techniques for deletions: random
pointwise (left), low energy regions (middle) and random blocks (right). Middle row shows results for simulated lowpass, highpass and
bandpass filtering. Bottom row, left: comparison of 4 deletion types for full covariance marginal estimation. Bottom row, middle: com-
parison of conditional mean estimation for 3 types of covariance matrix on random deletions. Bottom row, right: compares conditional
mean estimation for 3 types of covariance matrix, and for grand means, on energy-based deletion. Note the different scales.

effect on recognition rate than pointwise deletion.

The three main findings of this comparison are: (i) missing data
handling is best achieved with full covariance marginals, with con-
ditional mean imputation working reasonably well except at high
deletion rates; (ii) diagonal-only marginals perform poorly (but
from a lower baseline), as expected for this acoustic parameterisa-
tion; (iii) energy-based deletion works as well as pointwise-ran-
dom deletion, and significantly better than random block deletion.
Point (iii) is made clearer in the bottom row of figure 1 (left panel),
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which replots one deletion method (full covariance marginals) for
pointwise-random, energy and random-block deletion. In addi-
tion, results for a further condition (‘valleys’) in which only low
energy regions of the spectrum are retained is shown. As one
might expect, for a fixed deletion rate, it matters which parts of the
spectrum are removed.

4.2. Which covariance?
The computational intractability of performing many thousands of
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matrix inversions per acoustic data frame has been mentioned, and
the workaround involving the use of a common covariance matrix
for all models was necessary for practical application of these
techniques to RM. To assess the effect of this sub-optimal missing
data strategy on performance, three different covariance schemes
were compared. The first, ‘class’, represents the optimal strategy
which employs a separate covariance matrix for each class. The
‘grand’ scheme uses a single covariance matrix, estimated using
speech across all phones (not just the vowels). An intermediate
scheme, ‘broad class’, uses a single covariance matrix estimated
using just the vowels. This intermediate condition tests the possi-
bility of improving performance using more specific covariance
matrices whilst still retaining computational tractability.

The main result of this comparison (illustrated in the middle and
right panels on the bottom row of figure 1) is that both broad class
and grand covariances perform marginally worse than class-spe-
cific covariances in conditions of pointwise-random and energy-
based spectral deletion. This is a boost for the practical application
of missing data techniques for filterbank energy representations of
speech, but it does not explain the poor performance of grand
covariance schemes on RM. However, the RM studies employed
both grand mean and covariance to. reconstruct a single speech
spectrum (as opposed to different reconstructions for each class).
A further condition (lower right, fig. 1) utilising both grand mean
and covariance resulted in poorer performance, pointing to a pos-
sible explanation for the RM results. We have yet to confirm this.

4.3. Simulating spectral filtering
In order to further demonstrate the potential of missing data tech-
niques, a set of deletion conditions simulating various forms of
spectral filtering were tested. In the lowpass condition, elements
were removed from the higher frequencies. Here, as earlier, the
spectral completeness axis refers to the proportion of the spectrum
removed, and can be interpreted as the cutoff frequency, on a mel-
scale, of an ideal lowpass filter. The highpass and bandpass condi-
tions can be interpreted similarly. In the bandpass case, the band
retained was centred on the middle of the mel-frequency range.
In the lowpass condition, recognition performance degrades
gradually up to the removal of the top half of the spectrum. A more
rapid degeneration is seen for highpass and bandpass, although for
the greatest deletion (approximately 90% removal, or 4 points in
our 32-element spectral vector), bandpass deletions retain a rea-
sonable level of performance. Further, marginals are not always
superior in these conditions. Additionally, whilst conditional mean
imputation works well for moderate amounts of spectral deletion,
it (predictably) performs poorly when pressed to provide condi-
tional means based on a small number of points present.

5. DISCUSSION POINTS

1.Missing data techniques based on marginal distributions of mul-
tivariate Gaussians outperform other techniques in most deletion
conditions we have investigated.

2.However, there may be a gain in using a combination of tech-
niques, deploying the technique most suitable to the type and
extent of deletion e.g., conditional mean estimation works well
across deletion types when the deletion rate is not too severe; for
90% deletion, the unconditional mean is generally superior.

3.As reported in [5], conditional mean estimation can be much
improved by making use of the conditional covariance estimate
(eqn. 6) as an indication of the confidence. Performance on RM
improved from 4% to 37% using this device. These estimates
may also lead to an improvement in marginal-based schemes.

4.No significant difference was observed when grand or broad
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class covariances were used instead of model-specific covari-
ances. This is encouraging because model-specific covariance
inversion is infeasible in any realistic ASR task.

5.A performance penalty resulted from the use of grand means.

6.Energy-based deletions (simulating masked data) outperformed
random removal of spectral segments with equivalent size distri-
bution. This suggests that estimation from incomplete data is a
viable method for obtaining phone likelihoods at the frame level.

7.When estimates from incomplete data are used in the Viterbi
algorithm as the basis for recognition decisions across time, ran-
dom deletions will lead to uncorrelated errors from frame-to-
frame. We conjecture that it is easier to recover from these errors
than the time-correlated errors induced by realistic deletions,
which may explain our RM results.

8.The missing data approach may be useful in models of listeners’
performance on the recognition of distorted speech [6,11].

9.An alternative is multiband ASR [3,10], in which outputs from
independent recognisers for each frequency band are combined.
Multiband recognition is potentially important when it is known
that some frequency channels are corrupted by noise. For com-
bination with CASA, it would be necessary to use a relatively
large number of bands, and to perform the combination using
only a time-varying subset of band-recognisers.
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