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ABSTRACT

In real text-dependent telephone-based speaker verification
systems, both, additive and convolutional noise influence the
error rate considerably. In this paper, different procedures which
make a speaker verification system more robust against noise are
compared. We either use the spectral subtraction in addition to
the MFCC-feature extraction or only the PLP and RASTA-PLP
(without spectral subtraction). Considering spectral subtraction
two modifications were examined: one version which was pre-
connected to the system and a second one being integrated into
the MFCC computation. The first version has the advantage that
the window length can be chosen independently on those of the
MFCC procedure. This led to better results. However, the most
effective procedure for telephone speech data is the J-RASTA-
PLP, but the estimation of the optimal J factor is difficult. At first
we used a fixed J factor based on the off-line measurement of the
noise power. Finally, we performed some experiments to optimize
the system with the adaptive estimation of the J factor during the
utterance. This procedure is based on the method of spectral
mapping which has been shown to be very effective in automatic
speech recognition.

1. INTRODUCTION

Speaker identity is important for many applications such as
access control, automatic money transfer, telephone shopping,
etc.. The quality of telephone-based speaker verification (SV)
systems depends on the noise power of the speech data and the
telephone channel. There are several well known procedures for
automatic speech recognition, which make those systems more
robust against noise [3, 4, 8]. In this paper, we compare some of
these procedures for speaker verification. In our experiments, the
speech data were disturbed by additive and convolutive noise.

2. DESCRIPTION OF THE DATABASES

We used two databases (IFT and TUBTEL), both consist of the
same German sentences which include 18 phonemes [1, 2.

Table 1. Summary of the main features of both speech databases

speech data TUBTEL IFT
number of speakers 50 10
quality (fr=8 kHz) ISDN (G711) 0,3..3,4kHz
number of repetitions 14 24
(test/trainini) (9/5) (18/6)
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The TUBTEL corpus was collected in a real telephone environ-
ment and contained convolutional noise from telephone channel.
White noise was added to the clean speech in order to test the
speaker verification system at different SNR levels.

3. VERIFICATION SYSTEM

The speaker verification system shown in fig. 1 consists of the
following components: spectral subtraction, endpoint detection,
Jeature extraction and classification. Features can be extracted
from MFC-, PLP- [3] and RASTA-PLP-coefficients [4]. For the
classification we used a modified HMM recognizer according to
the HMM Toolkit (HTK) [5].
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Figure 1. Block diagram of the speaker verification system

4. SPECTRAL SUBTRACTION

The spectral subtraction (SS) was either pre-connected (external)
to the system or integrated into the MFCC feature extraction. If the
additive noise n(t) is stationary and uncorrelated to the clean
speech signal s(¢), then the power spectrum of the noisy speech
u(t) is the sum of both power spectra. The clean speech spectrum
can be estimated by a simple spectral subtraction of the noise
spectrum weighted by a parameter a:

P(Q)=P(Q)-a P(Q) M

The optimal analysis window length of the spectral subtraction,
which was integrated into a MFCC feature extraction, was
determined by the feature extraction. Bad results were achieved
with a window length of 32 ms per frame. These results are due
to the correlation between speech and noise signal. In this case
the equal error rates (EERs) were above that of the system with-
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out spectral subtraction (fig. 2). By using an external spectral
subtraction pre-connected to the system (fixed noise and a win-
dow length of 128 ms for the SS) better results were achieved
(fig.2). In case of non stationary (car) noise the spectral
subtraction was less successful [6].
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Figure 2. EER versus different SNR levels of the test data
(IFT corpus, MFCC: N=16, white noise, HMM: 55 states, 2 mix.)

5.FEATURE EXTRACTION & RASTA-FILTERING

The following experiments were carried out without spectral
subtraction in order to directly compare the influence of the
MFCC-, PLP- and RASTA-PLP analysis against noise. All
results are based on the comparisons between undistorted
training data and test data with different SNR levels.

5.1 MFCC-Analysis

Figure 3 compares the EER from the number of states of the
HMM for different SNR levels of the test data. For 18 phonemes
per sentence and Q=2 to 3 states per phoneme, there are either
Q=36 or Q=54 states per sentence possible. Additionaly the HTK
required 2 non emitting states. For a MFCC model order of N=16,
the best EER=0.06 % was achieved with Q=56 states (TUBTEL
corpus). A disadvantage of the MFCC feature extraction is the in-
crease of the EERs during additive noise [6].
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Figure 3. EER versus different SNR levels of the test data
(TUBTEL corpus, MFCC: N=16, white noise, HMM: 1 mix.)
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5.2 PLP-Analysis

For an HMM system with 38 states and a PLP mode! of order
N=20 we got the best results (IFT corpus).
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Figure 4. EER versus PLP model order N in the case of different
SNR levels of the test data and undistorted training data
(FT corpus, HMM: 38 states, 2 mixtures)

This becomes obvious when considering the error rates (fig.
4) and their decreased factors for high PLP orders. For an
additional use of delta cepstral coefficients we observed
improvements for all SNR levels. Figure 5 shows the best equal
error rates for a delta window length between 128 ms and 256 ms
(see also table 2).

Table 2. EER for static and delita cepstral PLP coefficients
(IFT corpus, PLP: N=20, HMM: 38 states, 2 mixtures)

PLP analysis EER [%] | EER [%] | EER [%]
(SNR) (15 dB) (10 dB) (5dB)
static coefficients only 0.86 4.25 13.95
static & delta coeff. 0.31 2.14 10.99
(delta window size) | (256 ms) | (128 ms) | (128 ms)
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Figure 5. EER versus detta window length of delta cepstral
coefficients for SNR = 5, 10 and 15 dB
(IFT corpus, PLP: N=20, HMM: 38 states, 2 mixtures)

868



5.3 LOG-RASTA-Analysis

The LOG-RASTA-PLP can be used for the elimination of con-
volutional noise. We achieved good results for speech data which
are only distorted by telephone channel noise. If the telephone
speech data is additionally distorted by white noise, the LOG-
RASTA-PLP analysis again leads to better results for all SNR
levels compared to PLP (fig. 6).
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Figure 6. EER versus feature extraction, interval length of delta
cepstral coefficients and type of the noise. (TUBTEL corpus,
PLP: N=20, HMM.: 56 states, 1 mixture)

5.4 J-RASTA-Analysis

The J-RASTA-PLP is useful for the elimination of both, additive
and convolutional noise. For applying the J-RASTA-PLP, the
estimation of the optimal J factor is necessary. The J factor
depends on the noise power of the speech data. For its
estimation, three different approaches are possible:

¢ without noise estimation (trial-and-error)
¢ off-line noise estimation (fixed J)
e adaptive noise estimation during the utterance

The J factor is defined by [7]:
Je—1b )

At first our system uses a fixed J factor which was estimated by
an off-line noise measurement of the entire speech database.
Figure 7 shows, that the results for the IFT corpus are nearly
independent from the J factor of the test speech data but they
strongly depend on the J factor of the training speech data.
Figure 8 shows similiar dependence for the TUBTEL database.
Extensive research is needed to determine the optimal J factor
above all, because the estimation of the J factor is necessary to
determine the SNR level. Hermansky et. al. found a J factor of
C=3 in equation (2) to be optimal [7]. For our databases, the best
results were reached with C=0.03, giving a J factor of 10, With
this J factor, the equal error rate can be reduced by J-RASTA
(table 4, SNR=5 dB) down to EER=1.41 % for the IFT corpus and
down to EER=3.08 % for the TUBTEL corpus. Figure 7 and 8
show in principle the same results for both speech corpora, but
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depending on the SNR of the utterance, different J factors for
training and test data are necesssary. In order to enable an efficient
use of this -RASTA-PLP, a specific procedure, which reduces the
estimation for finding the right J factor, is needed.
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Figure 7. EER versus J factor of training and test data
(IFT corpus, PLP: N=20, SNR=10 dB, HMM: 38 states, 2 mixtures)
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Figure 8. EER versus J factor of training and test data

(TUBTEL corpus, PLP: N=20, SNR=10 dB, HMM: 56 states, 1 mix.)

5.5 Adaptive J-RASTA-Analysis (spectral mapping)

Further improvements of the results can be achieved by an
adaptive determination of the J factor. Due to the dependence
between the J factor and the SNR of the speech, the estimation of
the noise level for adaptive settings of the J factor during the
sentence is possible. The use of a time-varying J factor brings in
a new problem that must be considered in training and
verification, because changing a J factor over a time series
introduces a new source of variability in the analysis. The J
factor, as required by varying noise conditions, generates
different dynamic of the spectra. The training system must be
contend with a new source of variability. One approach to handle
this variability, which has been successfully used in automatic
speech recognition, is spectral mapping [7]. We therefore adapted
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the method for our (SV) application. Finding a set of mapping
coefficients, we applied the following J factors which gave the
best resuits (chapter 5.4) for the J-RASTA-PLP (1.0E-02, 1.0E-
03, 1.0E-04, 1.0E-05, 1.0E-06, 3.2E-02, 3.2E-03, 3.2E-04, 3.2E-
05, 3.2E-06, 6.2E-02, 6.2E-03, 6.2E-04, 6.2E-05 and 6.2E-06).
Figure 9 (see also table 3) shows the results for the adaptive
RASTA-PLP with different J factor of training data and varying
constant factor C (equation (2)). First experiments have shown
significant improvements of result. For example, the EER for
SNR=5 dB could be reduced from 9.8 % to 1.38 % compared to
PLP and adaptive J-RASTA-PLP (table 4).

EER[%]

JTRAN=10E05C=3
FTRAN = 10E:06 C = 0000008

5 10 15 o rvise

SNR of test data [dB]

Figure 9. EER versus SNR of test data data for adaptive J-RASTA
(TUBTEL corpus, adapt. RASTA-PLP: N=20, HMM: 56 states)

Table 3. EER for different constant factors C (TUBTEL corpus,
adaptive RASTA-PLP: N=20, HMM: 56 states, 1 mixture)

train constant EER [%]|EER [%]| EER [%] | EER [%]
Jfactor | 4. tor C additive | additive | additive only
(equation (2)) || noise noise noise | telephone
(SNR) (5dB) | (104B) | (15dB) | noise
1.0 E-06 3 1.41 0.40 0.24 0.07
1.0 E-06 0.003 1.68 0.41 0.19 0.03
1.0 E-06 0.000003 1.38 0.47 0.18 0.03

Table 4. Best of equal error rates for different feature extraction
(IFT corpus, PLP: N=20, HMM: 38 states, 2 mixtures)
(TUBTEL corpus, MFCC/PLP: N=16/20, HMM: 56 states, 1 mix.)

feature speech [|[EER{%]|EER [%]|EER [%]| EER [%]
extraction | database || additive | additive | additive only
noise noise noise | telephone
SNR (5dB) | (10dB) | (15dB) noise
MFCC TUBTEL} 13.86 2.78 0.20 0.06
PLP TUBTELH 9.80 1.55 0.48 0
LOG-RASTA| TUBTEL| 2.69 1.55 0.30 0.09
J-RASTA | TUBTEL 1.41 0.39 0.19 0.04
adaptive TUBTEL 1.38 0.40 0.18 0.03
J-RASTA
PLP IFT 10.80 2.10 0.62 -
J-RASTA IFT 3.08 1.08 0.19 -
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6. CONCLUSION

In this paper, we compared several procedures which make a
speaker verification system more robust against noise. Our first
experiments using spectral subtraction have shown that it can be
used successfully if it is pre-connected to the speaker verification
processing procedures. Otherwise, if spectral subtraction is inte-
grated into the MFCC computation, the window length is too
short and results in disturbing correlation effects. Therefore the
advantage of low computation of the integrated spectral subtrac-
tion cannot be applied. Moreover, spectral subtraction (even if it
is pre-connected) is restricted to stationary additive noise. But
non stationary noise, which normally occurs in telephone chan-
nels, is much more difficult to handle.

If the telephone speech data are additionally distorted by
white noise, the LOG-RASTA-PLP yields to better results for all
SNR levels compared to PLP and MFCC analysis. Both, additive
and convolutional noise can be better eliminated by the J-
RASTA-PLP, but the off-line estimation of the right J factor is
difficult.

Adaptive estimation of the J factor during the utterance
improves the equal error rate in our speaker verification system.
The procedure of spectral mapping is a well known effective
methode to employ such systems. The adaptive RASTA-PLP is
an useful procedure which makes the speaker verification system
more robust against noise too. Additionally, we observed further
small improvements by changing the constant factor C (equation
(2)). In the future, we will concentrate on different versions of
spectral mapping and some experiments with non stationary
noise which occurs in a real telephone environment.
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