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ABSTRACT

“In this paper, we present a method to incorporate and
re-estimate state duration constraints within the Maximum
Likelihood training of hidden Markov models. In the
recognition phase we find the optimal state sequence
fulfilling the state duration constraints obtained in the
training phase. Our target is to get speaker-dependent
training and recognition perform well with a very small
amount of training data in the case of mismatch between
the training and testing environments. We take advantage
of the fact that speakers tend to preserve their speaking
style in similar situations (e.g. when speaking to a
machine) and our main means to reach the target is to
force similar state segmentations in the training and
recognition phases. We show that with the proposed
method we can substantially improve the robustness of a
speech recognizer and decrease the error rates by over
93% when compared with a standard approach.

1. INTRODUCTION

The speech recognition field can be divided into
speaker-dependent and speaker-independent categories.
Speaker-independent recognition can be seen as a much
more attractive approach from the users' point of view, but
speaker-dependent recognition can still not be totally
discarded. In many applications, like in voice-dialling,
speaker-dependent models need to be utilized. Typically,
the training of speaker-independent models has much less
limitations than the training of speaker-dependent models.
One of the most severe limitations in speaker-dependent
training is the small amount of training material. Due to
this, many well performing approaches, like discriminative
training, are not very usable. To be able to make a good
speaker-dependent recognizer one must apply such means
that are suitable and well argumented considering the
limitations in the training phase.

In speaker-dependent recognition the models are often
not very reliable and the training is easier in a reasonably
silent environment, like in an office. Thus, if no
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restrictions for state-segmentations imposed by the Viterbi
decoder are set, in a practical usage environment, e.g. in a
moving car in highway, state-segmentations can be far
away from the ones obtained in the training environment.
Since wrong segmentations cause increased error rates it is
in our interest to prevent such as effectively as we can.
Our target is to force similar state segmentations in the
training phase and in the recognition phase.

It is known that standard HMMs are not able to model
the temporal structures of speech effectively. This is a
major deficiency, since we would like to set clear
restrictions for the state-segmentations. It has been
suggested by many researchers that an explicit modelling
of state durations can increase the recognition rates [1-9].
State durations are usually modelled with certain
distributions [1-6] and the probabilities produced by these
distributions are added to the overall log-likelihood
calculation. In the literature, bounded state durations used
in the recognition phase have also been suggested [7-9].

In [8-9], bounded state durations were estimated after
the training scheme by finding the global minimum and
maximum durations for each state. The scheme resulted in
quite loose state duration constraints which were then used
in the final recognition phase. We have noticed that this is
not effective enough. We are, therefore, using bounded
state durations already in the training phase.

2. THE PROPOSED ALGORITHM FOR STATE
DURATION CONSTRAINTS

In the conventional Maximum Likelihood (ML)
training, the model parameters are estimated using all state
sequences, most of which are unlikely to happen in the
real cases but still contribute to the estimation. In another
extreme case, Viterbi training, only the best state sequence
is used to estimate the model parameters, which cannot
give robust estimates. In our new approach, only the state
sequences that are likely to happen, and which fulfill given
state duration constraints are used in the estimation. In
addition, the same state duration constraints are used in the
recognition phase.
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In the training phase we use state duration constrained
ML (SDML) training. Initially, we start with loose state
duration constraints, and gradually tighten the constraints.
This way we can end up with the optimal state duration
constraints producing the desired word duration
constraints.

State duration constraints can be added to the ML-
training by modifying the existing forward and backward
procedures. The modified forward procedure, assuming
left-to-right models without skips, is given below:

at(i)=P(0102...ot \q, =i,/l,(pi '<'di Syi), and

' xt(i)d = P(°1°2"'°t'
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where g, is the state at time ¢, ¢ and % are the minimum
and maximum durations of the state i and dj is the duration
of the state {. The modified forward variable 04(i) is the
probability that 0,0,...0, are observed and that the state at
time 7 is i on the condition that durations in states {1,2,...,i-
1,i} are within the minimum and maximum limits. The
additional forward variable yx,(i)q is the probability that
010-...0, are observed and that the state at time ¢ is i on the
condition that durations in states {1,2,...,-2,i-1} are within
the minimum and maximum limits and that the duration in
state i is d.

1. Initialization
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3. Termination
P(OlA,0,7) =x T(N) , where T is the input frame count.

In a similar way, a modified backward procedure can
be defined.

Estimation of the state duration constraints is done
using loose beginning constraints (notice, that min=1 and
max=occ correspond to the conventional ML-training).
Duration constraints are then made more strict during the
SDML-training. Le. the minimum state durations are
estimated in the following way (MIN is the desired
minimum word duration in frames):
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SEN
IF ( Zlfps <MIN) THEN {
5=

FORi=1TON {
Di=(pi+1’ and Dj=(pj,wherej¢i,

1<j<N, and

T
P.=P(OIA,D,y)= 3 .. (N)

}
m=argmax(Pi), where 1<i<N,
P =0y +!

},

where T is the number of training tokens, T is the number
of frames in the k’th training token, and om(N) is the
modified forward variable considering the state duration
constraints D and yevaluated at the Ty ’th (that is, the last)
input frame in the state N..

Estimation of the maximum state durations can be
done in a similar manner as the estimation of the minimum
state durations (except that the duration constraints are
gradually decreased instead of increased).

In the recognition phase, we use a modified Viterbi
algorithm which is performed on a three-dimensional
(time, state, duration) space [9]. This way we can find the
optimal state observation sequence fulfilling state duration
constraints.

An example state duration constrained HMM structure
is given in Figure 1. The filled mother states represent the
actual HMM states and the unfilled duration states share
the same parameters (Gaussian densities) with their mother
states on the same vertical lines. State transitions define
the minimum and maximum state durations. In the
example, the first state has the minimum duration of 3 and
the maximum duration of S.

Figure 1. An example state duration constrained HMM
structure.
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3. RECOGNITION EXPERIMENTS

The algorithm was tested in a speaker-dependent
isolated-word recognition task. Standard Mel-frequency
cepstral coefficients (13: c0-c12) plus delta (13) and delta-
delta (13) values with 30ms frame and 10ms frame shift
were used in the tests. Since there was also a mismatch
between the training and testing environments, a simple
cepstral mean normalization (CMN) technique was
applied to the cepstral coefficients c1-c12. The training of
the models was done in a clean environment using one or
two training samples per model. 30 Finnish first names,
including highly confusable ones, were included in the
vocabulary. The vocabulary consisted of the following
names:

"hannu heikki jani janne jari juhani jukka kaarina
kari marko matti mikko minna pdivi pasi pekka petri
petteri riitta sakari saku sari seppo sirpa tero tiina
timo tommi tuula vesa".

Single utterance training

The names were spoken by 4 native male speakers. 1-
mixture variable-state HMMs for the names and a 1-
mixture 1-state HMM for the backround noise were used
in the experiment. Since the training was done with only
one or two samples, a global variance vector was
estimated from all 30/60 training utterances, separately for
each model set. This vector was assigned to each state of
each model within the set. The state count of a name
model was defined in the following way:

Frame_count /5,

where Frame_count was the number of frames in the end-
point detected training utterance. A simple energy and
zero-crossings based end-point detection was utilized.

The conventional ML-training (plus Viterbi decoding
in the recognition phase) and the proposed SDML-training
(plus the three-dimensional Viterbi decoding in the
recognition phase) were compared. In the case of the
SDML-training, the word duration constraints for each
model were derived from an end-pointed training utterance
with the following rules:

Minimum word duration = 0.8 * Frame_count and
Maximum word duration = 1.2 * Frame_count.

The following beginning (loose) state duration
constraints were used:

Minimum constraint: 2, and maximum constraint: 8.

The database for training and testing consisted of 3
sessions (sessions A, B and C) for each person, recorded
on different days. In each session each name was uttered
four times.
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Training of the models was carried out with the session
A data from which four different model sets were trained.
Each model set was tested with the session B and C data.
Noise recorded in a moving car in highway was added to
the session B and C utterances with different signal-to-
noise ratios (SNR) in order to test the performance in
noisy conditions. Table 1 gives the recognition rates in the
case of the ML-training. It can be seen that a dramatic
drop in the performance occurs around 0 dB SNR.

Clean | SNR: | SNR: | SNR: | SNR:
env. +5dB 0dB -5dB | -10dB
Personl | 96.67 | 92.92 | 70.31 | 26.15 | 7.08
Person2 | 93.65 | 90.73 | 67.29 | 23.13 | 4.79
Person3 | 97.40 | 95.00 | 81.77 | 36.04 | 9.17
Persond | 97.29 | 92.81 | 84.48 | 33.75 | 11.88
Average 96.25 | 92.87 | 75.96 | 29.77 | 8.23

Table 1: The results for the ML-training.

Table 2 gives the results in the case of the SDML-
training. It can be seen that a significant drop in the
performance occurs only in -10 dB SNR. A slight increase
of recognition rates in -5 dB SNR is hard to explain
knowing that the ML-training performance drops
drastically at the same -5 dB SNR. Notice that all the
average results for the SDML-training are better than the
corresponding results for the ML-training. The lower the
SNR, the bigger the difference is.

Clean } SNR: | SNR: | SNR: | SNR:
env. +5dB 0dB -5dB | -10dB
Personl | 97.81 | 94.69 | 93.54 | 93.23 | 82.92
Person2 | 93.02 | 90.73 | 90.83 | 90.94 | 80.00
Person3 | 98.23 | 95.73 | 95.94 | 96.46 | 91.67
Persond | 97.29 | 9490 | 93.54 | 93.23 | 90.83
Average | 96.59 | 94.01 | 93.46 | 93.47 | 86.36

Table 2: The results for the SDML-training.

Two utterance training

Two utterance training was carried out almost
identically with the single utterance training. The state
count of a name model was defined in the following way:

Average_frame_count | 5,

where Average_frame_count was the average number
of frames in the two end-point detected training utterances.
Training of the models was carried out with the session A,
B and C data from which total of six different model sets
were trained. Each model set was tested with the data from
other sessions. For example, if the first two utterances
from the session B were used to train the models, then the
sessions A and C were used for testing.

Some model sets were discarded since the end-point
detected training samples had too different durations.
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Notice that the two utterance SDML-training fails if the
training utterances have relative durations outside a
feasible range. In these cases the corresponding ML-
training model sets were also discarded in order to obtain
a true comparison. In a practical situation, however, one
would not have to discard the trained model but to ask for
more repetitions so that the model can be trained.

Table 3 gives the results in the case of two utterance
ML-training. The last row values of the table are the error
rate reductions when compared with the single utterance
ML-training. It can be seen that the error rates decrease
significantly in clean and +5 dB SNR conditions but
remain almost the same in noisier environments. Notice
that the direct averages of the personal results are slightly
different that the overall averages due to some discarded
training sets.

Clean | SNR: | SNR: | SNR: SNR:
env. | +5dB | OdB -5dB | -10dB
Personl 99.17 | 95.42 | 71.77 | 24.69 | 8.13
Person2 97.50 | 94.10 | 70.00 | 21.46 | 5.63
Person3 98.23 | 95.21 | 80.31 { 35.63 | 10.31
Persond 99.50 | 95.17 | 79.75 | 32.58 | 12.42
Average 98.81 | 95.10 | 76.47 | 29.81 | 9.81
Error rate | 67% 31% 2% 0% 2%
reduction :

Table 3: The results for the two utterance ML-case.

The corresponding two utterance SDML-training
results can be found in Table 4. Examining the last row of
the table, which gives the error rate reductions from the
single utterance SDML-case, one can notice that the error
rates decrease more heavily than in the ML-training case
and more importantly, the reduction of error rates is
significant also in noisy environments.

Clean | SNR: | SNR: | SNR: SNR:
env. | +5dB | 0dB -5dB | -10dB
Personl 99.38 | 96.15 | 96.04 | 94.79 | 85.83
Person2 97.71 | 94.17 | 95.00 | 93.96 | 85.21
Person3 98.96 | 96.25 | 95.52 | 96.46 | 91.98
Person4 99,17 | 96.50 | 95.08 | 94.92 | 91.67
Average 98.98 | 96.50 | 95.44 | 95.17 | 89.33
Error rate | 70% 34% 30% 26% 22%
reduction

Table 4: The results for the two utterance SDML-case.

Table 5 compares the ML-training and the SDML-
training head to head in the two utterance training case.
Table values are the error rate reductions that are obtained
with the SDML-training over the ML-training. One can
notice that the SDML-training is significantly better in all
environments, especially in noisy ones, which shows the
noise robustness of the SDML-training scheme. Error rate
reduction is the highest in -5 dB SNR, in which over 93%

Copyright 1997 IEEE

reduction is obtained. In -5 dB SNR, the average
recognition rate with the ML-training is less than 30%
whereas the rate with the SDML-training is over 95%.

Clean | SNR: | SNR: | SNR: SNR:
env. { +5dB | 0dB -5dB | -10dB

Error rate | 14% 19% | 81% | 93% | 83%

reduction

Table 5. Error rate reduction with the SDML-training
over the ML-training in the two utterance training case.

4. CONCLUSION

State duration modelling has generally been accepted
as an important concept within the HMM framework. In
this paper, a method to incorporate state duration
constraints into the conventional ML-training was
presented. Also, a novel method to estimate the state
duration constraints given the overall (word level)
duration constraints was presented. State duration
constraints applied both in the training and the recognition
phases of a speaker-dependent isolated-word recognition
system were shown to significantly increase the system
robustness compared to the conventional ML-training and
Viterbi decoding.
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