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ABSTRACT

A common approach to wordspotting is to augment the
keyword models with “filler” models to account for non-
keyword intervals. An alternative approach is to use a large
vocabulary continuous speech recognition system (LVCSR)
to produce a word string, and then search for the keywords
in that string. While the latter approach typically yields
higher performance, it requires costly computation and ex-
tensive training data. In this study, we develop several
segment-based wordspotters in an effort to achieve perfor-
mance comparable to that of the LVCSR spotter, but with
only a fraction of the vocabulary. We investigate several
methods to model the background, ranging from a few gen-
eral models to refined phone representations. The task is
to detect sixty-one keywords from continuous speech in the
ATIS domain. The best performance we achieve is 91.4%
Figure of Merit for the LVCSR spotter and 86.7% for a
spotter using 57 phone-based filler models.

1. INTRODUCTION

The task of wordspotting systems is to detect (a small set)
of keywords from a speech stream. The research challenge
for wordspotting is one of achieving the highest possible
keyword detection rate while minimizing the number of key-
word insertions. Therefore, it is not sufficient to model only
the keywords very explicitly; models of the background are
also required. Most of the wordspotters developed in re-
cent years were variants of HMM-based, continuous speech
recognition systems [1, 2, 3, 4]. In these systems, the non-
keyword intervals were represented by a variety of “filler”
models, ranging from a few phonetic or syllabic fillers to
whole words. It was shown that more explicit modeling of
the non-keyword speech stream improves wordspotting per-
formance. The benefits of incorporating a language model
for the transitions between the keywords and the filler mod-
els were also evaluated for some of the systems [1, 2, 4],
and were found to be substantial. As a general result, the
large vocabulary continuous speech recogniton (LVCSR)
systems with a language model component significantly out-
performed any other configuration. However, the LVCSR
approach to wordspotting, even though providing the best
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performance, has two important disadvantages, (1) it is
computationally very expensive, and (2) it tends to be do-
main dependent, requiring knowledge of the full vocabulary,
and a large body of training data.

In this paper, we describe our investigation into the use
of different background models in an effort to achieve com-
putational efficiency and maintain domain independence,
while establishing acceptable wordspotting performance com-
pared to the LVCSR wordspotters. Due to space limita-
tions, readers are referred to [5] for further details.

2. EXPERIMENTAL FRAMEWORK

2.1. System Description

The wordspotters described in this paper are segment-based;
they are derived from the SUMMIT continuous speech recog-
nition system [6]. The recognition network for the wordspot-
ters is shown in Figure 1 for N keywords and M filler models.

Figure 1: Recognition network for the wordspotting sys-
tems.

Any transition between keywords and fillers is allowed,
as well as self transitions for both keywords and fillers. This
configuration allows multiple keywords to exist in any one
utterance, as well as multiple instances of a keyword within
the same utterance. For the experiments described in the
next section we used 1, 12, 18, 57 and 2462 filler models
combined with 61 keywords in this configuration.
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2.2. Signal Representation and Features

The input signal is transformed into a sequence of 5 ms
frames, and each frame is characterized by 14 Mel-Frequency
Cepstral Coefficients (MFCCs). The signal is then seg-
mented into acoustically homogeneous intervals using a hi-
erarchical algorithm, creating a segment network. A feature
vector is then computed for each segment in the network.
The vector consists of a segment duration measurement and
35 MFCC averages computed within and across segment
boundaries.

2.3. Keyword Models

The keywords were represented by concatenations of pho-
netic units. They were expanded into a pronunciation net-
work based on a set of phonological rules. Two sets of pho-
netic units were used in the description of the keywords,
context-independent phones and word-dependent phones,
in distinct experiments. The models for these units con-
sisted of mixtures of up to 25 diagonal Gaussians in the
36-dimensional space defined by the measurements.

2.4. Filler Models

We examined the tradeoff between performance and com-
putation time for five sets of filler models. In the LVCSR
approach we explicitly modeled all 2462 non-keyword words
as fillers. In the CI-filler approach we represented the back-
ground with 57 context-independent phone-like words. The
remaining three filler sets consisted of 18, 12 and 1 mod-
els that were derived through clustering of the context-
independent phones.

2.5. Language Modeling

We propose a new approach to the construction of the
language model component. In previous research, when
context-independent phones or more general acoustic mod-
els were used for background representation, they were all
grouped into a single filler model. Thus, only a single gram-
mar transition probability into and out of the filler was com-
puted. In our approach, every acoustic model corresponds
to a unique filler model. Using the LVCSR system and
the orthographic transcriptions available from the training
data, we performed forced alignments that produced tran-
scriptions consisting of phones for the non-keyword words,
and whole words for the keywords. These transcriptions
were used to train the bigram language model for the key-
words and the acoustic filler models. The LVCSR also
used a bigram language model. Training was performed
on 10,000 utterances for all wordspotting systems.

2.6. Search

The Viterbi algorithm is used to find the best path through
the labeled segment network, with the pronunciation net-
work and the language model serving as constraints. The
output is a continuous stream of fillers and keywords. The
score for each hypothesized keyword is calculated as the
sum, over all segments composing the keyword, of (1) the
segment’s phonetic match score, (2) the score based on
the probability of the particular segmentation, (3) a lexical
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weight associated with the likelihood of the pronunciation,
(4) a duration score based on the phone duration statistics,
and (5) a bigram transition score.

3. EXPERIMENTS

3.1. Task

All experiments were performed in the Air Travel Informa-
tion Service, or ATIS, domain [7]. The task was the de-
tection of 61 keywords in unconstrained speech. The key-
words consisted of city names, airlines, days of the week,
fare types, etc. They were chosen out of the ATIS vocab-
ulary based on their high frequency of occurrence, and the
observation that they may constitute a sufficient set for
a hypothetical spoken language system that will enable a
client to fill out an electronic form, using speech, with in-
formation such as desired origin and destination point, fare
basis, and day of departure. The sets for training and test-
ing (see Table 1) were derived from all available data for
the ATIS task. They were specifically designed to contain
all keywords in balanced proportions.

# keywords | # utterances | # speakers
Training set 15076 10000 584
Test set 2222 1397 36

Table 1: Training and test sets in the ATIS domain.

3.2. Performance Measures

The performance of the proposed wordspotting systems was
measured using conventional Receiver Operating Charac-
teristic (ROC) curves and Figure of Merit (FOM) calcula-
tions. A keyword was considered successfully detected if
the midpoint of the hypothesized word fell within the refer-
ence time interval. The hypothesized keywords were sorted
with respect to their scores, and the probability of detec-
tion at each false alarm rate was computed. The FOM was
calculated as the average probability of detection between
0 and 10 false alarms per keyword per hour. The average
computation time per utterance was also measured. We
used the actual computation time when comparing between
the systems since it demonstrated less fluctuation than the
elapsed time. All timing experiments were performed on
a Sun SPARCstation-20 with two 50MHz processors and
128MB of RAM.

3.3. LVCSR and CI-Filler Wordspotters

The LVCSR wordspotter was developed first in order to
serve as a benchmark against which the performance of all
other spotters would be evaluated. The background repre-
sentation consisted of 2462 words. Both keywords and back-
ground words were modeled as concatenations of context-
independent phones, and were expanded into a pronunci-
ation network. The LVCSR system achieved 89.8% FOM
on this set of keywords. The tradeoff for this outstanding

900




wordspotting performance was the rather long computation
time required due to the size of the vocabulary.

The vocabulary for the Cl-filler system consisted of the
61 keywords and the 57 context-independent phone-words.
The output of this continuous speech recognition system
is a sequence of phone-like words and keywords. There
are three factors that control the decision of hypothesiz-
ing a keyword versus hypothesizing the underlying string of
phones. The first one is the combined effect of two trainable
parameters, the word and segment transition weights (wtw
and stw). The wiw corresponds to a penalty for the transi-
tion into a new word, while the stw is a bonus for entering
a new segment. These parameters acquire appropriate val-
ues during a corrective training process that attempts to
equalize the number of words in the reference string and
the hypothesized string. The second factor is the bigram
transition score, which consists only of the transition score
into- the keyword in the first case, versus the sum of the
bigram transition scores for the underlying string of phones
in the second case. Finally, the arcs representing transitions
between phones within the keywords carry weights that are
added to the keyword score. Since these arc-weights can
be either positive or negative, depending on the likelihood
of the pronunciation path to which they belong, they can
influence the keyword hypothesis either way.

The CI-filler system achieved 81.8% FOM, approximately
8% lower in absolute value than that of the LVCSR system.
However, the computation time required for the Viterbi
stage of this system was approximately seven times less
than that of the LVCSR. These results encouraged us to
search for an even smaller set of filler models for back-
ground representation. The advantages of a smaller set are
less computation time and more flexibility, in the sense that
wordspotting in a new domain would require less training
data for language and acoustic modeling.

3.4. General Filler Models

We designed three sets of general fillers consisting of 18,
12 and 1 acoustic models. The general fillers were derived
by (supervised) clustering of the 57 context-independent
phones, based on their acoustic feature vectors. These classes
mostly correspond to broad phonetic classes (i.e., nasals,
closures, stops, etc.), thus agreeing with our acoustic pho-
netic intuitions.

A bigram language model was computed for each one of
the systems using the general filler models. It was trained
by replacing, for each sentence, the context-independent
phones used to represent the non-keyword intervals with the
corresponding cluster label, while keeping the keywords in-
tact. The wordspotter with 18 filler models achieved 79.2%
FOM performance, compared to 76.5% for the 12-filler sys-
tem and 61.4% for the 1-filler system. The ROC curves
for these systems, as well as for the LVCSR and Cl-filler
spotters, are shown in Figure 2.

3.5. Word-Dependent Models for Keywords

In a final set of experiments, we studied the effects of intro-
ducing word-dependent phones for the keywords on FOM
performance and computation time. The word-dependent
phones were trained from keyword instances only, while the
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Figure 2: ROC-curves for the wordspotters with different
numbers of filler models.

context-independent phones for the non-keyword words or
filler models were trained from non-keyword speech only.
The final score for each word-dependent phone model was
linearly interpolated with the score of the corresponding
context-independent phone. The interpolation weights were
computed as a function of the frequency of each word-
dependent model in the training set. The FOM perfor-
mance for the LVCSR system increased by 1.6% in abso-
lute value to 91.4%. An increase of 4.9% (to 86.7%) in the
FOM was achieved for the CI-filler spotter with the use of
word-dependent models for the keywords. The ROC curves
for these systems are shown in Figure 3.
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Figure 3: ROC-curves for the LVCSR and Cl-filler

wordspotters with and without word-dependent models.

While the Viterbi computation time remained almost
unchanged for both systems, the classification time increased
substantially as a result of the algorithm that we used for
these experiments. This classification algorithm computes
the score for all acoustic models, for all segments before
the Viterbi search is initiated. An algorithm that computes
acoustic scores upon demand during the search would save a
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lot of computation, and would make word-dependent mod-
els more attractive.

4. DISCUSSION

There is clearly a correlation between the degree of explic-
itness in background modeling and wordspotting perfor-
mance as measured by the FOM. The LVCSR utilizes the
most detailed filler models, i.e., whole words, and achieves
the highest performance of all spotters. As filler models
become fewer and more general, the FOM decreases mono-
tonically (c.f., Table 2 and Figure 4). The LVCSR sys-
tem outperforms the spotter that uses only a single filler
model by almost thirty percent in absolute FOM value.
The largest portion of this performance gain can be at-
tributed to the use of more refined acoustic models for the
background. An increase of 20.4% in the FOM is achieved
when the number of filler models is increased from one
general acoustic model to fifty-seven context-independent
phones. This result suggests that the use of more refined
phone representations, such as context-dependent phones,
could further improve the FOM. The remaining 8% gain in
performance is achieved by incorporating domain specific
knowledge, i.e., using models of all non-keyword words as
fillers. This further improvement can be attributed to a
more constrained search space and a more effective bigram
component. For instance, the probability that the current
word is a city name, given that the previously hypothesized
word was “from,” is much higher than if the previous word
was the single filler model.

[ Wordspotter | CI models | WD models |

LVCSR 89.8% 91.4%
CI fillers 81.8% 86.7%
18 fillers 79.2% -
12 fillers 76.5% -
1 filler 61.4% -

Table 2: Summary of FOM performance results.

The average computation time per utterance required
by each system is shown in Figure 4. As we expected, the
computation required for the Viterbi stage decreased with
the number of filler models. Compared to the LVCSR, the
Cl-filler system decreased the Viterbi computation time by
approximately a factor of seven, the 18 and 12-filler systems
by a factor of twelve, and the 1-filler system by a factor of
23. The classification time varied with the number of acous-
tic models, due to the specific algorithm that was used. As
we already discussed earlier, the computation required for
this stage can be significantly reduced with the use of a
more sophisticated algorithm.

5. CONCLUSIONS
There is a clear tradeoff between wordspotting performance

as measured by the FOM, and the Viterbi computation
time required for spotting. More explicit modeling of the
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Figure 4: FOM and computation time measurements for all
developed wordspotters.

background results in higher performance, but also requires
more computation. An acceptable compromise between
FOM performance and computation time seems to be the
Cl-filler system. It achieves over 80% FOM, and provides
significant savings in computation compared to the LVCSR
spotter.
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