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ABSTRACT

This paper proposes a spectral normalization approach in
which the acoustical qualities of an input speech waveform
are mapped onto that of a desired neutral voice. Such a
method can be effective in reducing the impact of speaker
variability such as accent, stress, and emotion for speech
recognition. In the proposed method, the transformation
is performed by modeling the temporal characteristics of
the Line Spectrum Pair (LSP) frequencies of the neutral
voice using hidden Markov models. The overall approach
is integrated into a pitch synchronous overlap and add
(PSOLA) analysis/synthesis framework. The algorithm is
objectively evaluated using a distance measure based on the
log-likelihood of observing the input (or normalized input)
speech given Gaussian mixture speaker models for both the
input and desired neutral voice. Results using the Gaussian
mixture model formulated criteria demonstrate consistent
normalization using a 10 speaker database.

1. INTRODUCTION

The ability to transform or modify the speech characteris-
tics of speakers with differing voice qualities towards a de-
sired neutral or “normalized” voice has several fundamental
applications. It is well known, for example, that speaker
variability such as accent [1], stress and emotion [2], and
physical variabilities such as vocal tract length can seri-
ously degrade the performance of modern speech recogniz-
ers. Hence, by developing algorithms which compensate or
normalize for such variations, the sensitivity of speech rec-
ognizers to such perturbations can be reduced. In addition,
other studies have attempted to impart voice personality
traits as part of overall speech synthesis systems [3, 4, 5]. Fi-
nally, improved normalization and speech analysis/synthesis
techniques will nltimately lead to new methods for generat-
ing more natural sounding synthetic speech of various vocal
qualities.

Several previous studies have considered normalizing
voices using vector quantization (VQ). In these approaches,
VQ-codebooks consisted of pitch, power and spectral pa-
rameters for both the input and desired neutral voice. A
mapping procedure such as Dynamic Time Warping is used
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to associate the parameter spaces between the two speaking
styles. Normalization is then carried out by performing lin-
ear prediction (LP) analysis on the input speech and apply-
ing a codebook mapping to transform the spectral param-
eters. A more sophisticated approach was also considered
by integrating the spectral normalization into a pitch syn-
chronous overlap and add (PSOLA) framework. Although
the mapping between the source and desired normalized
voice was also learned by a DTW process, the underlying
acoustical classes were determined using unsupervised clus-
tering of the feature parameters.

In this paper, we consider a new analysis/synthesis ap-
proach to the problem of speaker voice normalization. In
particular, hidden Markov models are employed to model
the time evolution of the Line Spectrum Pair (LSP) frequen-
cies of a desired neutral voice. The usage of LSP parameters
is motivated by several reasons. First, LSP parameters cor-
relate well to formant location and bandwidth structure.
Second, LSP parameters have been shown to exhibit good
interpolation properties. This has made LSP parameters
well suited for speech coding applications [6]. Finally, pre-
vious studies such as [7] have illustrated that LSP parame-
ters encode a fair degree of speaker specific information. In
this paper we formulate a normalization procedure which
independently models the desired neutral voice characteris-
tics for applications such as improved speaker-independent
recognition. Therefore, a set of identical training utterances
spoken by both the source and desired neutral voice is not
required in order to learn the acoustical mapping (in con-
trast to related previous studies where a DTW based learn-
ing phase was required).

2. ALGORITHM FORMULATION

2.1 Modeling Procedure

The spectral characteristics of the desired neutral voice are
modeled via Line Spectrum Pair frequencies. Here, it is as-
sumed that the training speech is phonetically labeled and
the phoneme sequence has been time-aligned to each train-
ing utterance. The segmentation procedure can either be
accomplished by hand-labeling or by an automated proce-
dure such as described in [8]. During the modeling phase,
the speech data from the training corpus is analyzed on a
frame-by-frame basis using a 5 msec frame rate and a 25
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msec analysis window length. For each short-time segment,
a set of 10 Line Spectrum Pair frequencies are computed
from a 10" order LP analysis as outlined in [9]. The obser-
vation vectors are then divided into training tokens for the
set of phoneme labels which occur in the training corpus.
From the tokenized parameter set, the model parameters
for a 5-state, single-mixture hidden Markov model are iter-
atively estimated for each phoneme using the Baum-Welch
method.

Given the set of monophone HMMs for the desired neu-
tral voice, an LP error residual is associated with each state
of the Markov chain. Hence, each state consists of a proto-
typical excitation sequence (source) in addition to an LSP
mean vector (filter). The excitation sequence is associated
with each state by performing pitch synchronous analysis
of the training speech. For each pitch synchronous analysis
waveform, a corresponding LSP parameter vector and 10¢*
order LP error residual is computed. Next, we choose the
analysis waveform whose corresponding LSP vector is clos-
est to the state mean LSP vector. Here, the Inverse Hai-
monic Mean (IHM) distance [10] is computed. This distance
metric weighs mismatch in formant location more heavily
than mismatch in formant bandwidth structure. Thus, for
an analysis waveform whose LSP vector is £, the distance
between ¥ and an HMM state mean LSP vector, ¥, is cal-
culated by,

P
dram = Z w; (z; — vi)° (1)

i=1

where w; is a weighting factor defined as,

(2)

wi = +
Ti = Ti-1  Tigl — Ti

with P = 10, o = 0 and zp41 = 7. Given the analysis
waveform whose LSP vector is closest to the HMM state
mean LSP vector, we associate the LP error residual from
the corresponding analysis waveform with the HMM state.
This procedure is repeated for each state in the model.

Finally, the median pitch (Fp) for the desired neutral
voice is estimated from the training speech. In summary,
the desired neutral voice characteristics are modeled by (1)
a set of monophone HMMs consisting of state dependent
mean LSP parameters and prototypical source characteris-
tics, and (2) the overall median pitch value of the desired
voice characteristic.

2.2 Normalization Procedure

Assuming the desired neutral speech model parameters
are known, the normalization is outlined as follows. The
pitch-mark locations within the input utterance are first de-
termined using the time-domain PSOLA technique [11]. For
each pitch-mark, an analysis waveform is obtained by win-
dowing a short-time segment of the input speech centered
about the pitch-mark location (the width of the window
is chosen as twice the local pitch period). Because voiced
speech conveys a greater degree of speaker specific qualities
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for speech recognition, we consider normalization of voiced
speech segments only. Hence, the analysis waveform is un-
altered in the case of unvoiced speech while a normalized
analysis waveform is desired in the case of voiced speech.

The normalization procedure for voiced phonemes is il-
lustrated in Figure 1. Here, the voiced phoneme segment
boundaries (shown in Figure 1 as 7; and 7i41) are assumed
known. With knowledge of the phoneme boundaries, the
state dependent mean vectors of the HMM are uniformly po-
sitioned within the boundaries. Note that the mean vector
components can be thought of as encoding the prototypical
spectral properties of the desired neutral voice. Using cubic
spline interpolation, a normalized LSP parameter vector is
obtained from the HMM mean vectors for the time-instant
of the analysis pitch-mark.

HMM FOR CURRENT PHONEME

T ‘\/‘
INTERPOLATED
LSP VECTOR SEQUENCE

STATE MEAN
LSP VECTOR

Figure 1: Illustration of LSP sequence determination.

In a similar fashion, the excitation sequence (LP error
residual) associated with each HMM state is used to de-
termine a normalized residual. Here, linear interpolation
of the state dependent residuals is performed to obtain the
normalized residual at the pitch-mark time instant. Finally,
a normalized analysis waveform is obtained by first trans-
forming the LSP parameter vector into a corresponding LP
coeflicient vector. The analysis waveform is then recovered
by filtering the normalized error residual with the all-pole
filter. Note here that the overall frame energy of the output
waveform is adjusted to match that of the input.

With knowledge of the overall median pitch of the in-
put speech (determined using a pitch tracking algorithm),
the synthesis pitch-mark locations are positioned such that
the overall median pitch of the output normalized voice is
equivalent to that of the neutral voice. This is equivalent to
scaling the pitch of the output waveform by a constant. In
this study, the prosodic structure and time-scale of the in-
put waveform are not modified (although the PSOLA frame-
work could be used to compensate for fast or slow speaking
styles). Finally, the normalized speech is recovered using
the pitch synchronous overlap and add method.
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3. ALGORITHM EVALUATION

3.1. Experimental Database

Speech from 10 adult male speakers of American English
was collected using a head-mounted microphone. The
speech was sampled at a rate of 8 kHz. Table 1 summarizes
the age, height, and median pitch value for each speaker
considered in this study.

SPEAKER MEDIAN
LABEL AGE HEeiGHT PItcH (F0)

A 36 1.83 m 103 Hz
B 24 1.70 m 139 Hz
C 27 1.73 m 110 Hz
D 29 191 m 129 Hz
E 24 1.84 m 125 Hz
F 26 1.80 m 133 Hz
G 29 1.85 m 130 Hz
H 24 1.75 m 127 Hz
I 25 1.78 m 137 Hz
J 39 1.78 m 97 Hz

Table 1: Summary of speakers used in spectral normaliza-
tion experiments.

The speech data consists of a set of 19 isolated mono-
syllabic word tokens (repeated 3 times) and 18 continuous
speech utterances. The text transcription for each utterance
was selected from the TIMIT database in order to ensure
a well-rounded phonetic balance. The data was phoneti-
cally time-aligned to the spoken phoneme sequence using
an HMM based speech segmentation algorithm.

3.2. Training Procedure

Using the 18 utterances and 19 isolated word tokens, a set
of 5-state left-to~-right monophone HMMs were estimated so
that a desired neutral voice could be obtained (i.e., voice A,
B, ..., I, J shown in Table 1). Here, the speech training
data was analyzed every 5 msec using a 25 msec Hanning
window. For each analysis frame, an observation vector con-
sisting of 10 Line Spectrum Pair frequencies was calculated.
In particular, 6 iterations of the Baum-Welch re-estimation
procedure was used to determine the parameters of each
monophone HMM. Using the procedure outlined in Sec. 2.1,
an LP error residual was associated with each state in the
Markov model.

3.3 Speaker Modeling for Algorithm Evaluation

It has been shown that Gaussian mixture models (GMMs)
are useful for modeling speaker identity [13]. As a result,
we consider assessing the performance of the proposed algo-
rithm using GMM speaker models. Consequently, we rep-
resent each voice S by a Gaussian mixture density ¢s. The
mixture density is represented as a weighted sum of M mul-
tivariate Gaussian densities where each mixture component
is defined by a mean vector, [, covariance matrix, &, and
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mixture weight, ¢. Hence the probability of observing a sin-
gle speech vector at time ¢, Z(¢), given a speaker model, ¢,

is expressed by,
M

P(E®)|8s) =) cibi (3).

i=1

(3)

where b;(-) is the i*® multivariate Gaussian density.

Let X, = {Z:(1),&s(2), -, Z:(T)} represent a sequence
of T observation vectors obtained from an input speech ut-
terance and ¢, and ¢, represent the GMMs of the origi-
nal input and general neutral voice respectively. Then the
log-likelihood of observing X, given the input and desired
neutral voice models can be expressed by,

(%.14x) _log{Hilp(fs(t)lm)}

P
log A =1
AT R 15, 7 (2.8 1 62)

p (X sl ¢s )
@
In other words, the measure indicates how well the input
voice scores to the desired neutral voice model relative to
how well the input voice scores to it’s own model. In this
study, a frame-normalized variant of Equation 4 is computed
by dividing by the observation count, T, of each utterance.
Noting the above formulation, the continuous speech ut-
terances in the database were analyzed every 10 msec using
a 25 msec Hanning window. The parameter set and the
number of mixture densities were chosen based on results
obtained in {13]. In particular, silence sections were removed
from each utterance and observation vectors consisting of
20 mel-cepstral coefficients were calculated. A total of 32
Gaussian densities were used to model each voice and 10
iterations of the EM algorithm were used to estimate the
voice model parameters.

3.4 Continuous Speech Evaluation

In this study, we are interested in normalizing the spectral
characteristics of a set of input speech utterances (produced
by speakers of differing vocal qualities) towards a desired
neutral voice. We first evaluate the proposed algorithm by
considering a single speaker from Table 1 as possessing the
desired neutral voice characteristic. To examine the effec-
tiveness of the proposed algorithm, the speech utterances
from the remaining speakers are systematically normalized.
Using the log-likelihood ratio measure, the parametric dis-
tance of the input speech (before and after normalization)
can be compared to that of the desired neutral voice.
Noting the aforementioned procedure, 18 continuous ut-
terances from 9 speakers (9 - 18 = 162 utterances) were
normalized for the desired neutral voice. The log-likelihood
scores obtained from each utterance were averaged in order
to generate an overall measure of closeness to the desired
spectral characteristics. The results of this evaluation are
shown in Figure 2. Here, we see the average log-likelihood
score before and after normalization for each possible de-
sired neutral voice scenario. It is apparent that the proposed
algorithm increases the log-likelihood of the input speech to-
wards that of the desired neutral voice. In fact, the strong
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negative values of the log-likelihood before normalization in-
dicate the small probability that the input speech was gener-
ated by a neutral-like voice. After normalization, however,
we see that the positive values of the log-likelihood measure
confirm that the probability that the processed speech was
generated by a neutral-like voice has improved. Overall, we
see that the average log-likelihood increases from -3.55 prior
to normalization to +1.63 after normalization.

DESIRED NEUTRAL VOICE
a A B CDEFGH | J OVERALL
0 MEAN
9 +1.63
3 Ed
w
X
=
Q.
o]
|
g'.
P, -3.55

| I BEFORE NORMALIZATION ~ [ AFTER NORMALIZATION |

Figure 2: Improvements in average log-likelihood score of
speech utterances to desired neutral voice after processing
by proposed spectral normalization algorithm.

In light of the results obtained in Figure 2, a second
evaluation was performed in order to assess whether the
proposed normalization successfully produces speech with
spectral characteristics that match closest to only that of
the desired neutral voice. In other words, the normalization
procedure may generate spectral characteristics which are
closer to the desired neutral voice, but at the same time
even closer to an undesired voice. To evaluate this scenario,
we use the same normalization setup from the first evalu-
ation, but modify the scoring procedure. In particular, we
compare the log-likelihood of the normalized speech against
GMMs for all voices listed in Table 1. Normalized utter-
ances are considered correctly classified as the desired neu-
tral voice if the log-likelihood of the desired neutral voice
is greater than the log-likelihood of the remaining voices
in the speaker set. This procedure is analogous to speaker
identification [13].

Results of the second evaluation are shown in Table 2.
Here we see, for example, that 96% of the utterances nor-
malized to match the spectral characteristics of voice H were
correctly classified as being produced by H and not some
other voice. In general, we see that the proposed algorithm
successfully directs the spectral characteristics in 9 of the 10
cases with the poorest performance resulting from normal-
izations towards voice E. It is suggested that such a method
would prove to be useful for limiting the impact of speaker
variability due to accent, emotion, or stress for speech and
speaker recognition applications.

4. CONCLUSIONS

In this paper a hidden Markov model based spectral normal-
ization approach was formulated. In the proposed method,
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DESIRED NEUTRAL VOICE (SEE TABLE 1)

[ A B C D E ]
100% 100% 100% 100% 42%
[ F G H I J
97% 97% 96% 100% 100%
Table 2: Percent of speech utterances correctly classified

as the desired neutral voice after processing by proposed
spectral normalization algorithm.

the spectral characteristics of a desired neutral voice are
modeled using HMMs derived from Line Spectrum Pair
frequencies. The overall approach was integrated into a
pitch synchronous analysis/synthesis framework which al-
lows joint normalization of spectral and excitation charac-
teristics. A Gaussian mixture model based criteria was for-
mulated to assess the performance of the proposed spectral
normalization algorithm. Using this criteria, the average
log-likelihood of the input speech parameters was shown to
increase from -3.55 (before normalization) to +1.63 (after
normalization) indicating consistent normalization of spec-
tral characteristics towards that of a desired neutral voice.
Such a scheme could be an effective method for neutralizing
input speech for improved speaker-independent recognition.
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