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ABSTRACT

Isolated word speech recognizers with fixed vocabular-
ies are often used to provide vocal services through the
telephone line. The paper illustrates a simple post-
processing approach that allows the hypotheses pro-
duced by a Hidden Markov Model recognizer to be
rescored taking into account the global temporal struc-
ture of the pronounced words. Our approach does not
directly rely on state/word duration modeling. It mod-
els, instead, the global time variations of the spectral
features of each word and their correlation in time: two
important perceptual cues that are only partially ex-
ploited by standard HMMs.

This method has been evaluated using three isolated
word speaker independent systems with vocabulary of
different size and complexity. We show that, with min-
imal overhead, the recognition performance improves
not only for small vocabulary recognition systems such
as the isolated digit one, or for the recognition of 26
Italian spelling names, but also for a system with a
475 city name vocabulary included in a vocal service
that provides information about the main railway con-
nections.

1. INTRODUCTION

It is well known that one of the main deficiency of the
classical HMMs is related to inadequate modeling of
the duration of the acoustic events associated with each
state. Since the probability of recursion to the same
state is constant, the duration probability of the acous-
tic event associated with the state has an exponentially
decreasing probability. This probability distribution of
the durations does not correctly model the speech tem-
poral structure.

To face this problem several techniques have been pro-
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posed that are recalled in [5]. These techniques rely on
state duration modeling by means of discrete or con-
tinuous distributions that are more adequate to fit the
temporal structure of speech, or they use the state du-
ration as an additional information for rescoring the
hypotheses produced by Viterbi decoding in a post-
processing approach. The algorithms of the first type
apply the state duration information within the decod-
ing procedure, at the expense of a substantial increase
of the computational complexity and memory occupa-
tion. The computational complexity of the algorithms
of the second type is instead minimal. Since the dura-
tion informationis not applied during the decoding pro-
cedure, the beam search strategy could sometimes elim-
inate correct word hypotheses. In most applications,
however, the correct word is normally found within the
top ten hypotheses, and a rescoring strategy based on
the results obtained by means of different models, can
be used to recover some errors.

A second weakness imputed to HMMs is the assump-
tion that within each state the observation vectors are
not correlated, while in reality the opposite is true.
The information has be exploited to design more robust
recognizer since it has been experimentally shown that
spectral variations are discriminant features for simi-
lar sounds [2]. To encode within a state the dynamic
features of the observation vectors several approaches
have been proposed that can be summarized into four
categories illustrated or referred in [3]:

e Addition to the observation vector of the first and
second derivative of each component.

e Use of conditional probabilities within each state.

e Explicit modeling of the spectral vector correla-
tion by means of linear prediction models associ-
ated to each state.
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e Use of two-dimensional cepstral features.

The first solution is the most popular and effective,
while for the second and third solutions one must deal
with problems related to the parameter estimation ac-
curacy and accept an increase of the decoding complex-
ity.

As an alternative to the first one, the fourth solution is
claimed to produce more robust spectral features with
respect to cepstral coefficients including higher order
derivatives [4].

A1l these solutions, however, do not account for global
spectral variations. Thus, they are not able to avoid
recognition errors deriving by an incorrect time warp-
ing. Many errors often occur, indeed, because a se-
quence of observations is decoded by a few states - typi-
cally adsorbing low energy frames - with high probabil-
ity and duration. The other states, instead, are rapidly
traversed because their distributions do not fit well the
remaining observations. These errors, therefore, do not
depend on the intrinsic confusion of acoustically similar
words, rather, the lack of good duration modeling and
an incorrect time warping produces word hypotheses
that are loosely related to the acoustics of the correct
word. :

To account for the dynamic structure of the observation
vectors, including both local and global variations, our
approach does not directly rely on state/word duration
modeling, rather it models the global time variations of
the spectral features of each word and their correlation
in time: two important perceptual cues that are only
partially exploited by standard HMMs.

In particular, in this work we propose to rescore the
probability produced by a conventional HMM system
by means of the probability of a second very simple rec-
ognizer using word “temporal” models. The HMM sys-
tem, using the first order derivative of the cepstral pa-
rameters and RASTA processing, takes care of the local
variations, while in the second system, the global time
spectral variations of a word are modeled by means of
two-dimensional cepstral features [1).

2. CEPSTRAL-TIME MATRIX

A two-dimensional cepstral-time matrix [3] is the prod-
uct of a Discrete Cosine Transform (DCT) performed
on a sequence of T' Mel-Frequency Cepstral Coeflicient
observation vectors along the time axis.

(2t-1)-n-x

T (1)

T
cx(n,T) = %Z mfecg(t) - cos
t=1
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where k, 1 < k < K, refers to the k — th observa-
tion vector component, ¢ indicates the time frame, and
n, 1< n <N, isthe order of the DCT along the time
axis. We are interested in the lower components (k
and n) of the two-dimensional cepstral matrix of equa-
tion (1) because they encode the long-time variations
of the spectral envelope [1, 4].

3. TEMPORAL MODELS TRAINING

To estimate the parameters of the temporal models of
a word w, every utterance in the training set is pro-
cessed to produce its two-dimensional cepstral matrix
ck(n, T), where T is the time frame length of the ut-
terance. Then, computing the mean (%, (n)) and vari-
ance (G, (n)) vectors for each order n of the DCT, we
obtain the word temporal model that consists of N K-
dimensional Gaussian densities, one for each order of
the DCT along the time axis:

Aw) = {N(Z(n), By (n),Tu(n))}

where %(n) is a K-dimensional DCT vector of order
n —th,

During recognition, to score of an utterance according
to a “temporal” model, we compute the log probability
of the observation vectors DCT along the time axis,
given the word model A(w), that is given by:

1<n<N

N
logP(DCT(OT)|A(w)) = ) _ logN (&(n, T), By (), Tu ()

n=1
(2)
where &(n, T') is the n—th column of the two-dimensional
cepstral-time matrix cx(n, T').

It is worth noting that the overhead for the DCT com-
putation is minimal, that a model includes only a single
Gaussian density for each order of the DCT, and that
no Dynamic Programming is performed to compute the
log probability of Eq. 2. Thus, compared with the
Viterbi decoding of continuous density mixture mod-
els, the memory occupation for the DCT and the com-
plexity of the likelihood computation is negligible.

4. RESCORING

To decode a given utterance, first its endpoints are de-
tected, and a HMM recognizer is activated that pro-
duces a set of word hypotheses with their associated
log probabilities. Then, the two-dimensional cepstral
matrix cg(n, T') is computed, and the temporal model
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Table 1: Results comparing the baseline system and the rescoring approach

Vocabulary Digits Spelling | City names (manual EPD) | City names (automatic EPD)
Vocabulary Size 10 26 475 475

Test set size 5178 14079 14440 14440

FIMM errors | 65 (1.3%) | 133 (1.0%) 682 (4.7%) 727 (5.1%)
Rescoring errors | 53 (1.0%) | 95 (0.7%) 459 (3.2%) 625 (4.4%)
Improvement % 18.4% 28.6% 32.7% 14.0%

score for these candidates is obtained by means of Eq. 2.
Finally, the HMM word hypotheses are rescored ac-
cording to the following steps:

1. Normalization of the HMM word candidate log
probabilities.
The HMM normalized score is obtained by

hmm._score(w) = (logP(OT |\(w)) — u)/o

where p is the mean value and o is the variance of
the log probability (logP(OT |A(w))) of all word
candidates that have not been pruned out by the
beam search. The maximum number of word can-
didates is limited to 10.

2. The same normalization is performed for the tem-
poral model log probabilities to produce the tem-
poral normalized score t_score(w).

3. The final score for each hypothesis is then com-
puted by linear interpolation of the two scores:

a - hmm_score(w) +
(1.0 — a) - t_score(w)

score(w) =

and o is estimated using an independent evalua-
tion set.

5. RESULTS

To test this approach we trained whole word HMMs
for two small vocabulary tasks - digits and 26 Italian
spelling names recognition - and 333 application depen-
dent subword models for recognition of 475 city names.
This latter vocabulary is used by a vocal service that
provides information about the main railway connec-
tions. It is worth noting that the number of utterances
for each word included in the database collected for
training the city names allow the corresponding tem-
poral model to be accurately estimated.

Table 1 summarizes, in its first three columns, the re-
sults obtained in a set of recognition experiments with
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the above mentioned vocabularies. For these exper-
iments, 12 cepstral, 12 delta-cepstral coeflicients and
RASTA filtering for the HMMs feature vectors have
been used, while N = 8 x K = 8 was the rank of
the two-dimensional cepstral matrix for the temporal
models and the interpolation factor o was set to 0.4 for
the first two vocabularies and to 0.3 for the city name
vocabulary.

Fig. 1 shows the number of errors for the digits vo-
cabulary as a function of a. Using values of « greater
than 0.3, the recognition rate improves with respect to
the baseline system, based on the HMM scores only
(e=1).

The value of  is estimated using an independent eval-
uation set. To assess the stability of the o value with
respect to different evaluation sets, two subsets of the
city name test set, including 7183 and 7216 utterances
respectively, have been considered. For these subsets
the number of errors as a function of a has been eval-
uated and is plotted in Fig. 2. Since the behavior of
the two curves is similar with respect to a, we can be
confident that the best value chosen for a subset will
be also good for an independent test set collected in
the same conditions.

These results show that the rescoring strategy is able,
with minimal overhead, to reduce the error rate of all
the tested systems. It is worth noting, however, that
in these experiments the word endpoints where auto-
matically detected, but manually controlled.

To test the robustness of the temporal models with
respect to automatically detected endpoints an exper-
iment has been performed using the 475 city name
database. Head and tail HMMs were trained to ac-
count for possible noise or extra linguistic segments at
the beginning and ending of words. Each word was
modeled, thus, by its sequence of HMM sub-word units
including optional leading and trailing noise models.

During recognition, Viterbi alignment detects for each
word candidate its endpoints ezcluding the initial and
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Figure 1: Errors for the digits task as a function of &

final noise, that are covered by the head and tail mod-
els. Notice that these boundaries may differ for each
word candidate, thus, more than one cepstral-time ma-
trix is possibly computed to obtain the temporal scores.
This approach, however, does not introduce an appre-
ciable overhead for the computation of the temporal
DCTs because our candidate list is limited to a maxi-
mum of 10 words, and many word hypotheses have the
same endpoints.

The results of this experiment, reported in the fourth
column of Table 1, show that the substitution errors of
the rescoring strategy are lower than the corresponding
errors of the baseline system without automatic end-
point detection. The automatic endpoint detection in-
troduces also 82 deletion and 97 insertion errors.

6. CONCLUSIONS

We have presented a simple, yet effective, post process-
ing approach for isolated word speech recognizers with
fixed vocabularies. It has been shown that rescoring
the hypotheses produced by a HMM recognizer tak-
ing into account the global temporal structure of the
pronounced words is effective not only for small vo-
cabularies, but also for a system with a medium size
vocabulary of 475 city names included in a vocal ser-
vice that provides information about the main railway
connections.

The main drawback of this approach is that it cannot
be applied to flexible vocabularies since it needs several
utterances of a word to reliably estimate its temporal
model. However, many vocal services provided through
the telephone line use fixed vocabularies. For these ap-
plications, databases with several samples of each word
are collected because it is well known that word mod-
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Figure 2: Errors for two subsets of the city name task
as a function of

els trained with application specific samples are more
robust than models obtained by the concatenation of
application independent subword units.

We plan to use this post processing approach to rescore
the N-best hypotheses produced by a recognizer of con-
nected digits collected through the telephone line.
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