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ABSTRACT

We demonstrate the use of explicit formant fea-
tures for vowel and semi-vowel classification.
The formant trajectories are approximated by
either three line segments or Legendre polyno-
mials. Together with formant amplitude, for-
mant bandwidth, pitch, and segment duration,
these formant features form a compact feature
representation which performs as well (71.8%)

as a cepstral-based feature representation (71.6%).

The combination of the formant and cepstral
feature improves the accuracy further to 73.4%.
Additionally, we outline future experiments us-
ing our robust, N-best formant tracker.

1. INTRODUCTION

Recent experiments on segment classification have fo-
cused on developing methods to represent the temporal
and spatial correlations between cepstral features, such
as mel-frequency cepstral coefficients (MFCC). Leung
[1] and later Chigier et al. [2] used segment thirds
and features designed to capture the changes across
the segment boundaries to represent the dynamics of
the feature trajectories. Osterndorf and Rokus [3] ex-
perimented with a mapping procedure for transforming
the variable-length segments to a fixed—length feature
representation. Later, Digalakis [4] used a dynamic
system approach to model the temporal evolution of
the MFCC features. Recently, Goldenthal introduced
tracks [5], a non—parametric, fixed-length representa-
tion of the feature dynamics. All these approaches op-
erate in the cepstral-feature domain, where the under-
lying articulatory dynamics are encoded in a highly
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non-trivial fashion. In contrast, we propose to use for-
mant features as the feature representation of choice
when attempting to model the dynamics of speech.

2. EXPLICIT FORMANT FEATURES FOR
CLASSIFICATION

Formant features have a long history in speech recog-
nition [6], but the accuracy and consistency of the for-
mant tracking algorithms have generally been too low
for high performance speech recognition. Talkin [7] lists
some of the problems of formant tracking algorithms:
(a) the determination of all formant candidates in each
speech frame, (b) the enforcement of smoothness con-
straints across vowel/consonant boundaries (tight con-
straints within sonorants, loose constraints elsewhere
in the absence of oral formants), and (c) the trade-
off problem between trajectory smoothness and the
amount of explained energy. In previous work, we have
built a robust, N-best formant tracker [8], which ad-
dressed these problems. Firstly, the tracking algorithm
uses a wild card mechanism which anticipates likely
omissions of formant candidates and inserts wild cards
to take their place in the tracking search. Secondly,
formants are tracked only within sonorant regions (de-
termined by a segmentation algorithm [9]), thus alle-
viating the problem of smoothness constraints across
boundaries. Finally, instead of optimizing a global cost
function which incorporates both smoothness and en-
ergy terms [10], our formant tracking algorithm max-
imizes a consistency score. Up to N consistent for-
mant interpretations are passed on to the segment clas-
sification stage, thereby delaying a difficult decision
(selection of the correct formant interpretation) un-
til a later processing stage where additional informa-
tion (e.g., classification probabilities, phonotactic con-
straints) is available. This basic idea of delaying diffi-
cult decisions as long as possible has proven very pow-
erful in the context of frame-based search algorithms.
By employing the same scheme for formant tracking
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Figure 1: Formant Features: the second formant of the phoneme /ay/ is approximated by 3 line segments using
the PLR algorithm. The dots indicate the locations of the formant features for this particular segment.

we hope that this approach will revitalize the use of
formant-based features for classification.

3. FORMANT TRAJECTORY
APPROXIMATION

Once the formant tracker has found a consistent for-
mant interpretation, we are left with the problem of
capturing the essence of the shape of each individ-
ual formant trajectory in order to extract features for
the segment classifier. Various methods for cepstral or
spectral feature spaces have been proposed in litera-
ture (e.g., [5, 3, 4]). In this work, we use two different
methods for approximating the formant trajectories:
line segments and Legendre polynomials.

Piecewise—Linear Regression

The Piecewise~Linear-Regression algorithm (PLR) [11]
proposed by Krishnan and Rao is used to find the
best three regression lines given a formant trajectory
through an iterative method which converges gener-
ally after 3-5 iterations. The classification features are
taken at the intersection points between adjacent line
segments along with the start and end points. Addi-
tionally, the end points of the last (first) line of the ad-
jacent segments (if they are sonorant) are also added to
capture contextual information. An example is shown
in Figure 1. The motivation for using line segments is
the intention to extract direct feature measurements
(e.g. formant locations) rather than presenting the
classifier with an encoding of the salient information.
They also lend themselves more conveniently to speaker
normalization techniques.
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Legendre Polynomials

The formant trajectories can also be approximated by
polynomials. We chose third-order Legendre polyno-
mials (LEG) because of their use of an orthonormal
basis, which produces more robust estimates of the co-
efficients of the polynomials.

The third-order basis polynomials ¢; in Equation
1 are taken from [12]. The Legendre coefficients a; are
then computed as follows:

1 & i
a; = -——-M+1 Z;y; . ¢](H) . (1)

An arbitrary point z € (0, 1) within the scaled seg-
ment can be reconstructed by:

3

fe) = a5 - 45(2)

J=0

z e (0,1)

The average prediction error can then be computed
as: 1 . .
PE = 373 .Z; l% = f(57) |
As in the PLR case, contextual features are ex-

tracted if the neighboring segments are sonorant (and
hence are also approximated by Legendre polynomials).

4. VOWEL/SEMI-VOWEL
CLASSIFICATION EXPERIMENTS

In this section, we report on a series of classification ex-
periments using the TIMIT database to determine the
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Feature Set # Features | Accuracy
PLR (3 Line Segments) + D 19 66.0%
PLR+D+A+P 23 68.2%
LEG + PE+ D 22 69.6% |
LEG+PE+D+A+P+B 29 71.8%
MFCC + D 113 71.6%
MFCC+D + P 114 73.1% |
MFCC+ LEG+PE+D+A+P+B 141 73.4%

Table 1: Vowel /Semi-Vowel Classification Results

potential of explicit formant features such as trajec-
tory approximation schemes, formant amplitude, and
formant bandwidth for vowel /semi—vowel classification.
Additionally, we investigate the use of pitch estimates,
since pitch information is often used in proposed speaker
normalization methods motivated by perceptual exper-
iments [13].

The classification experiments use the 14 vowels and
4 semi—vowels (liquids and glides) of the final phoneme
set as defined by Lee in his initial TIMIT classifica-
tion work [14]. The classifier, a multilayer percep-
tron (MLP) trained with conjugent-gradient optimiza-
tion, was trained on the NIST training set containing
3698 utterances (si,sx) for a total of 58268 training to-
kens. The test set consisted of 400 utterances from the
TIMIT test corpus (6462 test tokens). In addition to
the PLR and LEG features, we also added formant am-
plitude (A), formant bandwidth (B), pitch [15] (P), the
prediction error (PE) in the case of the Legendre poly-
nomials, and the segment duration (D) to the feature
set. These initial classifiers were trained with N = 1.
The best feature configuration achieved 71.8% classifi-
cation accuracy, as can be seen from the summary of
the classification results in Table 1.

For comparison, we trained an MLP classifier us-
ing MFCC features: (a) MFCC averaged over segment
thirds, (b) MFCC averaged over the 2 frames left (right)
of the left (right) boundary, (c) MFCC averaged over
3 frames starting 2 frames to the left (right) of the left
(right) boundary, as well as the segment duration. As
can be seen from Table 1, the best feature configuration
based on formant features performs almost identically
to the MFCC-based classifier (71.6%).

The best classification performance of 73.4% is achieved

when both feature sets are combined. However, adding
only pitch (P) to the set of MFCC features increased
the classification accuracy to 73.1%, indicating that
pitch was responsible for at least the major part of
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the improvement in performance.

5. N-BEST EXPERIMENTS

The above results were obtained using N = 1. How-
ever, our formant tracking algorithm produces a list
of up to N consistent interpretations of the formant
information for each segment or sequence of sonorant
segments. In the N-best classification paradigm, the
phonetic category a* with the highest probability over
all N interpretations Interp; is used to label the seg-
ment:

L]

a” = argmax p(a|/nterp,y) fork=1... N
ak (2)

That is, we address the question: “Assuming this
is the correct formant interpretation, which phoneme
would it be?” Note that we propose to use more than
one set of features per segment in the classification pro-
cess! This is a novel concept, as far as we know.

To avoid time—consuming labeling of formants, we
use an iterative method for labeling (marking the cor-
rect interpretations) the data and training of a vowel
classifier at the same time. Firstly, an initial classifier
is trained for N = 1. Secondly, this initial classifier is
then used to “label” the formants by selecting the in-
terpretation that yields the highest probability for the
correct vowel category. A new vowel classifier is then
trained on the machine-labeled interpretations. The
labeling and training steps are repeated until the per-
formance of the classifier on a separate development
test set converges.

Table 2 summarizes the results of the iterative train-
ing process using PLR features. The training set con-
sisted of half of the TIMIT training utterances. The
remaining training utterances were evenly distributed
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Table 2: Classification Results for Iterative Training
Procedure

into two development test sets. The number of for-
mant interpretations per segment was set to 3. The
iterative process reduced the error rate by 2.5%. This
small decrease is mainly due to the fact that most of
the interpretations are actually identical, therefore re-
ducing the choice for the selection of training patterns.
Improving the pruning strategy of the formant tracker
should result in a higher performance gain for the iter-
ative training procedure.

6. CONCLUSIONS AND FUTURE WORK

This research shows that formant-based features can
produce classifiers that are as accurate as cepstral-
based classification features with a 4-fold reduction in
the size of the feature space. We now intend to inte-
grate the N-best tracker into our phonemic segment
classifier.

This work opens up the possibility of incorporating
perceptually motivated dynamic features {(which are al-
most invariably described in terms of formant motions)
into automatic classifiers. Future work will concentrate
on investigating explicit normalization methods as well
as such dynamic phenomena, as suggested in the lit-
erature on vowel perception. Additionally, consonant
classifiers using formant-based features will be built.
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