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ABSTRACT
In this work, environment adaptation is studied in order
to -transform PSN speaker independent isolated words
HMM to the GSM environment. LMR transformations
associated with groups of HMM densities are used to
adapt the densities. Both mean vectors and covariance
matrices of the densities are adapted.

It has been shown that few amount of GSM data are
sufficient to transform the PSN HMM in order to match
the GSM environment and to achieve performances
equivalent to those of an HMM trained with large amount
of GSM data. The number of groups of Gaussian densities
seems to have small influence on the results. However, the
minimum number of groups depends on the vocabulary
size.

Finally, this technique is compared to the Bayesian
adaptation and the results show that similar performances
can be obtained with both methods.

1. INTRODUCTION

The mismatch between test and training environments
seriously degrades the speech recognition performances.
A microphone replacement or a different transmission
environment are typical cases of situations where an
adaptation of the model parameters is necessary to match
the new recognition conditions. Environment adaptation
methods have been widely studied in recent years [1],[{2].
Spectral transformation and/or Bayesian adaptation
techniques may be used to get the new estimate of the
model parameters, based on few amount of data from the
new (target) environment. Bayesian adaptation [3]
consists in re-estimating the model parameters, within the
classical ‘‘Estimate Maximize’’ EM algorithm, using a
priori distributions of these parameters and the few
amount of the adaptation data. The adaptation may also
be achieved by a spectral transformation of the original
environment acoustic space. This could be done in two
ways: by transforming the original training data and then
retraining the model with the adapted data [4], or by
directly applying the transformation on the model
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parameters [5]. It is obvious that applying the spectral
transformation to directly adapt the model parameters is
more attractive. However, this supposes that some
hypotheses must be assumed on the HMM sub-processes
in the target space.

In order to use spectral transformation to adapt the
HMM parameters, two problems remain: the
idecntification of the transformation function and the
estimation of the function parameters. Several functions
have already been used to perform spectral
transformation. ‘‘Linear Multiple Regression’” (LMR) is
a popular one [1][2]{6]{7]. Several LMR functions can be
used, each one been associated to a region of the
acoustical space [6][7].

Two main approaches exist to estimate the HMM
parameters. The first approach is based on the *‘Minimum
Mean Square Error”> (MMSE) criterion between aligned
vectors from the original and target spaces. The second
approach makes use of the initial HMM model in the
adaptation procedure [6][7][8][9]. For speaker adaptation,
interesting results are obtained in [6] and [7], where the
LMR is used to update mean vectors of the original
model Gaussian densities. The LMR parameters may be
estimated, within the segmental-EM [10] algorithm
framework, in order to get the ‘‘Maximum Likelihood™
(ML) of the adapted model on the target data. Moreover,
to improve the effect of the transformation, several
regression matrices are applied, each one being
associated with several state distributions grouped by
groups [6][7]. The set of groups is generated, by merging
HMM's Gaussian densities.

In this work, the preceding approach is extended in
order to adapt both of Gaussian mean vectors and
covariance matrices using LMR transformations. The
Gaussian densities of the original model are also grouped
and a LMR is associated with each group. In order to
define the groups, a binary tree is constructed by merging
couples of closest Gaussian densities [11] going from the
leaves to the root. This method is used to adapt a speaker
independent ASR system trained in the PSN network
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environment to the ‘‘Global System Mobile’” (GSM)
network environment, using a few amount of GSM data.

This paper is organized as follows. In section 2, the
adaptation algorithm is detailed. In section 3,
experiments and results on a PSN/GSM database are
reported. Section 4 presents the conclusions.

2. ADAPTATION ALGORITHM

Using spectral transformation to adapt the model
parameters to a new environment supposes that the
original model represents the main acoustical information
relative the vocabulary words, and that few amount of
data from the new environment are sufficient to estimate
the parameters of a function that transforms the model
parameters to better match the new environment.

Supposing that LMR is a suitable transformation, two
different approaches exist to estimate its parameters, as
noted in the introduction. Given some data from the
target environment and the reference environment
training data, feature vectors may be coupled in order to
directly estimate the transformation parameters based on
the MMSE criterion. Coupling speech frames is generally
a source of error, especially when dealing with speaker
independent data. The direct estimation of LMR
parameters using the reference HMM, in the framework
of the EM algorithm, offers a smart solution to the
problem. Actually, all the reference conditions are
merged in the HMM parameters and the coupling
between adaptation frames and the HMM densities is
seen as an incomplete data problem.

In the proposed adaptation scheme, groups of HMM
Gaussian densities are defined. All the densities of a
group share the same LMR transformation. This provides
robustness to lack of adaptation data for some densities
and a smoothing of the global adaptation model [6][7].
To do this sharing, the densities of the HMM, are
recursively merged in a binary tree structure, the closest
two densities being merged at each iteration. The
distance criterion is based on the likelihood loss after the
merge operation {11]. The desired number of groups of
densities, is arbitrary chosen, it determines which level is
to be considered in the tree. Once the groups of densities
and the associated LMRs are defined, two problems
remain.

1. How to determine the parameters of the adapted
distributions given the LMRs parameters?

2. In the "Maximize" step of the segmental EM
algorithm, how to estimate the LMRs parameters ?

2.1 Adapted Distributions Parameters

In order to get the adapted Gaussian parameters the first
and second order moments must be computed. Given a
PSN model distribution with 1 and Z as mean vector and
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covariance matrix, let us consider the LMR associated
with this distribution. This LMR is defined with the
regression matrix A and the bias vector b. After
adaptation, the new mean vector and covariance matrix

are obtained by :
pu=A.pu+b
Z=A.Z.A"

Finally, by substituting the parameters, the adapted
pdf of the sub-process corresponding to the state e,
becomes :

p(y/e):(zn)-q”.||A.>:.ATu"”.e-%(v-A-u-hf-A‘T-E"-A"-<.v-A+t-b)
where y is a feature vector in the new environment and q
is the dimension of the feature space.

Looking to the resulting pdf, it can be seen that the
result is similar to the application of the (inverse) LMR
on the feature vector y (i.e. Ay - AL.b).

2.2 Estimation of the LMR Parameters

At each iteration of the segmental EM algorithm, the
adaptation data vectors are aligned on the adapted model
densities, given the LMRs parameters obtained at the end
of the preceding iteration. From this alignment, the
vectors, associated with a group of densities, help to
estimate the corresponding LMR parameters using the
ML criterion. The logarithm of the likelihood of the
adaptation data, relative to a group C, given the LMR
parameters A et b is defined as follows :

L
1
loglp,({yDl=cte + ¥, % {-Elog HA.Z. AT
I=1 yed,
'1 - - -
4 AT AT 5 A (A D)

where A is the HMM, and d, is the 1-th density of the
group C with parameters |, and X,

Deriving this equation with respect to A" and b
(covariance matrix being defined positive), leads to the
following equations :

L [+ L
b= A.[Zn,f-{':] 2 E AN

1=1 i=1

and,
L 1 L i L -
2ndA-EA Yyy + 2 En 2| Xn 2 Ay,
I=1 yed, k=1 p=1
L l, L
-1 - 40T -t =T
- I, l: >n.%, '] DY I NTRAED ANTRAETY
k=1 p=1

where n, is the number of vectors associated with the 1-th

density and "y, represents the mean of these vectors.
Unfortunately no direct solution can be easily derived

for these equations if the covariance matrices are non-

diagonal. In the CNET HMM-based system (PHILS0),
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the sub-processes have Gaussian pdfs with diagonal
covariance matrices. Making the hypothesis of diagonal
regression matrix A, a diagonal element a can be
obtained by solving the quadratic equation (in 1/a) :

L —
2.ny/o; .
11 W=t ,
;' L h z Zy;/ Glz
2“ ,/O'lz I=1 yed,
1=1
L _ L _
L Zn]y.lc.’) anyk/crij
1 — 5 \l=1 =1
+ anu,y,/c, - L +N=0
1=1 zn/ Glz

I=1
where N is the total number of vectors for the group C, o,
and p, are the mean and standard deviation for the

dimension considered and Ty, is the element,
corresponding to the dimension considered, of the mean
of the vectors associated with the I- th density.

Given the diagonal element, the corresponding bias can
be easily found using :

L
2":6’—1 - Zl].l.l]/ 0'12

b=l=l

L
Xn/o;
I=1
Using these equation, the LMRs parameters can be
estimated within the segmental-EM algorithm as well as
the adapted model parameters.

3. EXPERIMENTS AND RESULTS
This approach is experimented on a speaker independent
isolated word database collected in both the PSN (=1000

calls) and GSM (=1300 calls) network environments. The
vocabulary is formed of 10 digits and 40 command
words. The automatically detected vocabulary words
were validated by a human listener. Only the correctly
detected words are used in these experiments. Two sets of
experiments are conducted function of the vocabulary :
one on the digit vocabulary, and the other on the whole
vocabulary of 50 words.

Left-right HMMs with 30 states are used to model the
vocabulary words, and silence models are placed on both
sides of the vocabulary models to avoid precise detection
of the words to recognize. A simple Gaussian pdf with a
diagonal covariance matrix is associated to each HMM
state.

Two parts are distinguished for both PSN and GSM
databases. For the PSN database, one part is used for
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training, the other one for testing. For the GSM database,
the target environment, the first part constitutes the
adaptation data and the second part corresponds to the
testing data.

Figure 1 shows the recognition error rates obtained on
GSM and PSN test databases for the digit vocabulary,
function of the number of groups of densities used for the
spectral transformation. A GSM error rate reduction of
45% with respect to a training with PSN data is observed.
The performances obtained when training in the GSM
network condition are nearly reached. Based on figure 1,
it seems that the choice of the number of groups is not
critical. 200 groups of densities is a good compromise for
the digits database.

Figure 2 shows the recognition error rates on the GSM
speech data as a function of the number of density groups
and of the amount of GSM data used for the adaptation.
The results show that less adaptation data can be used
without deteriorating the recognition performances.
Actually, the same error rates are obtained when only
1/16 from the GSM training database is used for the
adaptation.
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Fig. 1 - GSM adaptation using regression groups.
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Fig. 2 - GSM adaptation with little amount of data.

Figure 3 shows the results obtained with experiments
on the whole vocabulary (50 words) when using different
amount of GSM data to adapt the PSN model. These
results are compared to the ML training of a HMM with
the same amount of GSM training data alone or combined
with the whole set of PSN training data. Looking to these
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results it appears clearly that for large amount of GSM
data, GSM training, combined PSN & GSM training and
adaptation with linear regression (number of groups
sufficiently high to consider all the conditions in the
adaptation data) produce equivalent performances. For
few amount of GSM adaptation data, the adaptation by
LMR achieves high performances with respect to the
classical training techniques. LMR adaptation is
compared to the Bayesian adaptation technique described
in [3]. It seems that equivalent performances are achieved
with both techniques for this task.
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Fig. 3 - Comparing LMR adaptation, Bayesian adaptation
and classical training on the whole vocabulary.

4. CONCLUSION

This paper presents an environment adaptation technique
based on LMR. Linear multiple regressions are used in
order to adapt the parameters of the HMM densities, both
mean vectors and covariance matrices. HMM densities
are grouped and all the densities of a given group share
the same LMR. On the basis of a few amount of
adaptation data, the transformation parameters and the
adapted mean vectors and covariance matrices are
estimated in a Maximum Likelihood sense within the
framework of the segmental EM algorithm.

Experiments are conducted in order to adapt an
isolated words speaker independent HMM trained with
PSN data to the GSM network environment, The results
show that this adaptation allows to reach the
performances of a GSM training. Choosing the number of
the groups of densities (and associated transformations)
to be great or equal to the 1/3 of the number of densities
in the model seems to be a good compromise in our
experiments.

It has been proved that, with this technique, a little
amount of adaptation data (~50 calls) is sufficient to get a
reliable adapted model. The adaptation technique keeps,
from the original HMM, all the speaker independent
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acoustical information relative to the vocabulary words
and transform it to better match the target environment
on the basis of few amount of adaptation data. Finally,
when compared to Bayesian adaptation similar results are
obtained.
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