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ABSTRACT

Conventional speaker-independent HMMs ignore the speaker
differences and collect speech data in an observation space.
This causes a problem that probability distribution of the
HMMs becomes flat, and then causes recognition errors.
To solve this problem, we construct the speaker subspace
for an individual speaker and project his speech data to
his own subspace. By this method we can extract speaker-
independent phonetic information included in the speech
data. Speaker-independent HMMs can be constructed us-
ing this phonetic information. In this paper, we describe
the result of phoneme recognition experiments using the
speaker-independent HMMs constructed by the speech data
projected to the speaker subspaces.

1. INTRODUCTION

Speaker-independent HMMs are usually constructed using
various kinds of speech spoken by many speakers. This
causes a problem that the probability distribution of the
HMMs becomes flat and then causes recognition errors.

This flatness is explained in Fig.1. Anindividual speaker
has his own subspace in which his phoneme characteristics
are well represented. The subspaces of different speakers
locate in different position in an observation space. How-
ever, conventional speaker-independent HMMs ignore the
speaker subspaces and collect speech data in the observa-
tion space.

To solve this problem, the individual speaker subspace
should be constructed using his own speech data and conse-
quently speaker normalized phoneme data be produced by
projecting the speech data to his own subspace. Speaker-
independent HMMs can be trained by collecting the speaker
normalized phoneme data. In this paper, we propose a
method to construct the speaker normalized HMMs and
show the effectiveness experimentally in phoneme recogni-
tion by comparing with the conventional speaker-independent
HMMs.

2. SPEAKER SUBSPACE
As shown in Fig.1, we observe speech data X 4 of speaker A

and speech data Xp of speaker B in an observation space.
The speech data are a sequence of spectral feature vectors
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Figure 1: Observation space and speaker subspace

z 4;: and zp: obtained at time ¢ by short time spectral anal-
ysis. We denote the speech data X 4 as a matrix whose row
is a spectral feature vector z%§,, (1 <t < M). The column
of the matrix corresponds to frequency i, (1 < i< N).

By singular value decomposition, the speech data ma-
trix X4 is decomposed as

Xa=UaSaV] (1)

Here U4 and V4 are matrices whose columns are eigenvec-
tors of XAXI and X7 X 4 respectively, and T 4 is a singular
value matrix of X 4.

The eigenvectors of the correlation matrix X5 X4 are
orthonormal bases of the speech data X 4, computed based
on a criterion that the total distance is minrimized between
the observed speech vectors z4: (1 <t < M) and the or-
thonormal bases[1]. Then V4 is considered as the orthonor-
mal bases of the speaker subspace. If r numbers of the
larger singular values are selected from the matrix X4, the
number of dimensions of the matrix U4 becomes M x r
and the row still corresponds to time. The number of di-
mensions of the matrix V7 becomes r x N and the matrix
VT is considered as the speaker subspace. This method of
constructing the speaker subspace V4 is called the CLAFIC
method[2].

Since the speech data matrix UaX 4 is produced by
projecting the speech data to the speaker subspace Va,
and represented in his own speaker subspace, we can say
that speaker information is less included in UaX 4 than the
speech data matrix X 4 presented in the observation space.
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This indicates that U4 X 4 is the speaker normalized data
and has mainly phonetic information. Based on this idea,
speaker normalization methods are described in more de-
tails.

3. SPEAKER NORMALIZATION

3.1. Canonical Correlation Analysis

A well known method of speaker normalization and adap-
tation is canonical correlation analysis{3]. The step of the
canonical correlation analysis is summarized as follows (see

APPENDIX (A));

STEP(1) Feature vectorsin spoken sentences are matched
by DP between speaker A and B, and the matched
speech data X 4 and Xp are obtained.

STEP(2) X4 and Xp are decomposed as X4 = QR and
Xp = PS respectively by QR-decomposition.
STEP(3) @ = QTP is computed and eigenvectors v’y
with the large eigenvalues are obtained by eigenvalue
decompaosition of the 227, In the same way, eigen-
vectors vp; are obtained by eigenvalue decomposition
of the Q7. The axis va; = R} v/y; of speaker A and

VR = S"lv};i of speaker B are computed.

3.2. CLAFIC Canonical Correlation Analysis

The canonical correlation analysis has a problem that the
subspace produced by the canonical correlation analysis
does not present the speech data in a compact and pow-
erful way. It also causes the problem that the HMMs must
be re-trained when a pair of speakers are changed, because
the subspaces of a pair of speakers are simultaneously pro-
duced by the canonical correlation analysis.

To solve these two problems, we have already proposed
CLAFIC canonical correlation analysis in which the sub-
space of speaker A is produced by singular value decom-
position shown by Eq.(1) at first, and then the subspace of
speaker B is produced as to maximize the correlation of the
subspace axes between speaker A and B [4]. The step of
the CLAFIC canonical correlation analysis is summarized
as follows (see APPENDIX (B));

STEP(1) Feature vectors in spoken sentences are matched
by DP between speaker A and B and the matched
speech data X 4 and X g are obtained.

STEP(2) Orthonormal bases V4 of the speaker A is com-
puted using the speech data X4 by singular value
decomposition.

STEP(3) The axis vp of speaker B is computed as follows
in the way of maximizing the correlation between the
axes v4 and vp using speech data Xp.

\/622—21 E21 VA

/ -1
1)5212 222 221 vA

where C 1s the variance on the axis va4.

vp =

2

In this paper, we show experimentally the effectiveness
of this CLAFIC canonical correlation analysis for multi-
ple speaker normalization and also for constructing speaker

normalized HMMs, compared with the conventional speaker-
independent HMMs.
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4. SPEAKER NORMALIZATION RESULT

4.1. Database and Experimental Condition

We carried out phoneme recognition experiments for multi-
ple speakers using CLAFIC canonical correlation analysis.
The number of phonemes is 46 kinds. The speech data
used is ATR phoneme-balanced sentence set which includes
7 speakers and 150 spoken sentences for each speaker. The
experimental condition is shown in Tablel.

Table 1: Experimental condition

Sampling frequency 12kHz
High-pass filter 1—-0.97z""
A [ Feature parameter LPC cepstrum(16th)
A | Frame length 20ms
Frame shift Sms
Window type Hamming window
H | Number of states 5 states 3 loops
M [ Covariance matrix Diagonal
M [ Type Mixture densities HMM
Number of Mixture 4

4.2. Effectiveness for Multiple Speakers

We selected the speaker MTK (male) as a base speaker.
The subspace of the base speaker MTK was designed by
the CLAFIC method using his 150 spoken sentences. His
phoneme HMMs were constructed using speaker normalized
speech data obtained by projecting 150 spoken sentences to
his subspace. For remaining six speakers (3 males and 3
females), speaker subspaces were constructed by CLAFIC
canonical correlation analysis using even numbered 75 sen-
tences among 150. Odd numbered 75 sentences among
150 were projected to the speaker subspace and resulted in
speaker normalized speech data. This speaker normalized
data was recognized by the phoneme HMMs constructed
by the speaker normalized data from MTK. The evalua-
tion was based on the phoneme HMM evaluation algorithm
without phoneme hand-labels[5].

The recognition result is shown in Table2. In the ta-
ble, DEP indicates the speaker dependent phoneme recog-
nition result and INDEP indicates the speaker independent-
phoneme recognition result where 500 spoken sentences from
50 speakers were used for HMM construction. The aver-
aged recognition rates of DEP and INDEP were 75.9% and
54.3% respectively. FIX indicates the phoneme recognition
result without speaker normalization. Namely, speech data
in the observation space was recognized by the HMMs of the
speaker MTK, constructed in the observation space with-
out speaker normalization. The averaged recognition rate
of this method was 44.9%. CCCA indicates the result by
the CLAFIC Canonical Correlation Analysis. The averaged

recognition rate was 62.0%.

4.3. Speaker-Independent HMMs

In this experiment, 50 speaker subspaces were constructed
using 50 spoken sentences respectively (selected from ASJ
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database) by the CLAFIC Canonical Correlation Analy-
sis. Then 500 spoken sentences (10 from each speaker)
projected to the speaker subspaces were used for construct-
ing speaker-independent HMMs. The recognition result is
shown in Table2. In the table, CCCA-INDEP indicates the
phoneme recognition result by speaker-independent HMMs
constructed using the speaker normalized data. The aver-
aged recognition rate of this method was 63.7%.

From the table, it can be said that phoneme recognition
accuracy of the CLAFIC Canonical Correlation Analysis is
17% higher than that of FIX and 8% higher than that of
the speaker-independent method (INDEP). The speaker-
independent HMMs after speaker normalization {(CCCA-
INDEP) shows the accuracy by 1.7% higher than CCCA.
This means that speaker normalization is well performed

by CCCA.

Table 2: Phoneme recognition result for multiple speakers
using speaker normalized data(%)

FIX [ CCCA [ CCCA- | DEP | INDEP
INDEP
MSH m) [ 59.5 61.5 63.6 74.9 55.0
MHO m) | 43.2 56.8 59.2 70.1 47.2
MMY m) | 52.2 61.7 59.8 77.0 48.3
FYM f 39.0 62.5 65.7 77.5 58.5
FYM f 38.0 67.0 709 | 804 62.7
FKS (f) | 37.6 62.2 63.0 75.6 54.3
Average ] 449 ] 620 | 637 | 759 [ 543

5. CONCLUSION

The effectiveness of speaker normalization by the CLAFIC
canonical correlation analysis was shown through multi-
ple speaker experiments. The phoneme recognition result
showed that the accuracy of the CLAFIC canonical cor-
relation analysis was 8% higher than that of the conven-
tional speaker-independent HMMs which were trained by
the speech data in the observation space. Further work is
planned for investigating the speaker normalization ability
by discriminant analysis instead of the CLAFIC method.
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7. APPENDIX

(A) Canonical Correlation Analysis

Canonical correlation analysis finds two axes v4 and vp
whose correlation is maximized, after projecting the speech
data X 4 of speaker A and the speech data Xp of speaker B
to the axes v4 and vp respectively. This analysis is shown to
be exactly same as finding two axes v4 and vp on a criterion
that the distance between the speech data of speaker A and
the corresponding speech data of speaker B is minimized,
after projecting them to the axes va and vp respectively.

(Proof)

Let Xava denote a one-dimensional vector whose elements
are speech data X 4 of speaker A projected to the axis va.
In the same way, let Xpvp denote a one-dimensional vector
whose elements are speech data Xp of speaker B projected
to the axis vy. The total square distance d° between these
two projected speech data X av4 and Xpvp is computed as
follows;

# = (Xava—Xpvp)T(Xava — Xpvs) (3)
viX5Xava +v5XEXpup
—vEXEXava —v5 X3 XpUE

T
= v5T11va +v5T0vp — vET2v4 — v4 1205
Here following constraints are employed to find the solution.
1)3;211 va =1 (4)

vET20vp =1 (5)

Then d? is simplified as follows;

& = 1+41-05S0v4 — 051208 (6)
2(1 — v5T12vB)

It can be seen that the analysis to minimize the total
square distance d?> between the two speech data projected
to the axes v4 and vp is same as the analysis to maximize
the cross-correlation v3 Z12vp between the two axes v4 and
vp. Further it can be said that the two subspaces obtained
by the canonical correlation analysis for two speakers are
different in the observation space but relatively equivalent
because the axis correlation is maximized. It should be no-
ticed that the axes of the subpace obtained by the canonical
correlation analysis are not orthonormal.

Now, a method to find the axes v4 and vg is shown. The
cross-correlation v};Elzvy shown in Eq.(6) is maximized
under the two constraints shown in Eq.(4) and Eq.(5). Us-
ing Lagrange’s method of indeterminate multiplier, the ang-
mented objective function is defined as follows;

¢(va,vB) = viT120E — %vIEnvA - %vﬁzzm (7
Partial differentiations in terms of v4 and vp are;
3¢

Fos Zi2vp —p1lunva =0 (8)
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Then the following equation is obtained;

(v5%12)T — 42 To2vm =0 (9)

120 = 131104 (10)

Tnva = p2Lsnvp (11)

Multiplying Eq.(10) by v} from the left and multiplying
Eq.(11) by v5 from the left lead to the following equations;

VAT12UB = pvAT1104 = M (12)
V552104 = (20552208 = p2 (13)

Then
1 =p2 =2 (14)

Uéing the above equation, Eq.(10) and Eq.(11) are expressed
as follows;
Zizvp = Alnva (15)

To1v4 = AZgpvp (16)
Fq.(15) and Eq.(16) are expressed as follows;

(o %) (0) (% 2) (%)
3% 0 vp - 0 X vp

(17)
va4 and vp are found by solving the above equation as fol-

lows. At first, the speech data X4 and Xp are decomposed
by QR-decomposition as follow;

X4=QR (18)

Xp = PS (19)

here Q and P are orthogonal matrices. From Eq.(18) and
Eq.(19),

Tu=X3iXa=RT'Q"QR=R"R (20)

T2 = X5Xp = STPTPS = $7§ (21)
From Eq.(20) and Eq.(21),

Ty 0 RT o R o
(O 222>=(0 ST)<0 5') (22)

By substituting Eq.(22) into Eq.(17)

(= %) ()=2("% &)(88)(w)

By simplifying the above equation,
RT o \'/ o = RY o
(0 ST) (221 62)( 0 s-‘) (24)
R 0 R O
(5 3) ()= (8 5) ()
Here by setting v, = Rva and v = Svp,
T -1 -1
(}E SOT) (Egl 262)(30 591) (25)
UI v‘
«()=(3%)
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By simplifying Eq.(25),

0 RT_12123‘1 v’ =2 A
ST 'y R 0 vg /T T\ v

(26)
Eq.(26) is further simplified by setting @ = RT 'T;,57%,

(# 0)(4)=2(8) =

Q is computed as follows by QR-decomposition of X 4 and
Xpas Xa=QR, Xg=PS,
Q = RT7Sus Tt =RTT'XIXps' (28)
= RTYRTQTPS)S™'=QTP

vy and vh are computed by eigenvalue decomposition of

Eq.(27). Finally v4 and vg are computed as va = R~ 1o/,

and vp = S 'vg.

(B) CLAFIC Canonical Correlation Analysis

After the axis v, is computed by a CLAFIC method which
is the most typical in the subspace method[2][4], the axis
vp is computed to maximize the cross-correlation 05212 vg
under the following constraints;

UiEu‘l}A =c (29)
‘vgzzzvg =c (30)
By Lagrange’s method of indeterminate multiplier,

¢(ve) = 1)2212'05 - %ngnva (31)

By partial differentiation in terms of vg,

dp

dvg

1l

(vau)T — pl22vB (32)

Y2194 —pZ2vp =0

Then
pve =5, Taiva (33)

By substituting vp into Eq.(30), following equation is ob-
tained;

[ 1,
"(EzzlzzlvA)Tzzz—(znlEzlvA)
“ u
1 -
= ;5(0521222212210.4):0 (34)

Then p is obtained as follows;

/ To wle
N vA212E22 221 VA

By substituting the above g into Eq.(33), the following vp
is obtained;

VCE3,) Taiva

—1
Vi1 Tava

1 .-
v = 222212211)‘4 = (36)
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