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ABSTRACT

We propose novel speaker independent (SI) modeling and
speaker adaptation based on a linear transformation. An
SI model and speaker dependent (SD) models are usually
generated using the same preprocessing of acoustic data.
This straightforward preprocessing causes a serious prob-
lem. Probability distributions of the SI models become
broad and the SI models do not give good initial estimates
for speaker adaptation. To solve these problems, a normal-
ized SI model is generated by removing speaker characteris-
tics using a shift vector obtained by the maximum likelihood
linear regression (MLLR) technique. In addition, we pro-
pose a speaker adaptation method that combines the MLLR
and maximum a posteriori (MAP) techniques from the nor-
malized SI model. Experiments have been performed on
Japanese phoneme recognition test using continuous density
mixture Gaussian HMMs. For the baseline recognition test
of normalized SI model, 12.8% reduction phoneme recogni-
tion error rate compared to the conventional SI model was
achieved. Furthermore the proposed adaptation method
using normalized SI model was effective than the tested
conventional method regardless the amount of adaptation
data.

1. INTRODUCTION

For practical use of speech recognition in many applica-
tions, speaker independent (SI) speech recognition systems
using continuous mixture density HMMs (CDHMM) have
been developed. SI models have many parameters that
are trained using a large amount of data to cope with
speech variations of many speakers. Performance of the SI
model, however, is still poorer than that of a well trained
speaker dependent (SD) model. Therefore, speaker adap-
tation is widely used to adapt the SI model to a specific
speaker[1][2][3]{4](5][6][7].

The SI models are usually constructed using various kinds
of speaker independent speech with the same preprocessing
for all speakers. This straightforward preprocessing causes
a serious problem. The probability distributions of the SI
models become broader than those of the SD model and
the SI models do not give good initial estimates for speaker
adaptation. To solve these problems, various speaker nor-
malization techniques have been investigated[4][5][8][9][10].

This paper presents a novel SI modeling and speaker
adaptation based on linear transformation. A normalized
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SI model is generated by removing speaker characteristics
using a shift vector obtained by the maximum likelihood
linear regression (MLLR) [1] technique. We also present a
speaker adaptation method that combines the MLLR and
maximum a posteriori (MAP) [3] techniques from the nor-
malized SI model.

In the following section, we begin with an explanation
of speaker normalization that uses linear transformation.
Next, linear transformation’speaker adaptation using MAP
estimation is described. In Section 3, experimental results
for a Japanese phrase database are given.

2. SPEAKER NORMALIZATION AND
ADAPTATION USING LINEAR
TRANSFORMATION

2.1. Linear transformation

In adaptation that uses linear transformation, the mean
vector of a k-th Gaussian distribution to be adapted, jix, is
calculated from the mean vector of the initial model yy:

ik = Apx + b, 1)

where A is an n x n (n is the order of the mean vector
dimension) transformation matrix and b is a constant shift
vector. In maximum likelihood linear regression adaptation
(MLLR), which is one of the efficient linear transformation
adaptation methods, A and b are estimated by maximizing
the likelihood of the adaptation data.

Assuming that covariance matrices (n x n) of all distri-
butions are diagonal (diagls} , 0%, ..., o7 ]), the p-th row
element of the transformation matrix A and the p-th ele-
ment of b can be calculated by
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Figure 1. An example of normalizing observation
vectors using MLLR.
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and  denotes the shared Gaussian distribution set, vx(t)
denotes the posteriori probability of occupying the k-th
Gaussian distribution at time ¢, and o;, is the p-th element
of the observation vector. Here, px, and aﬁp are the i-th
element of the mean vector and p-th element of variance,
respectively.
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Figure 2. Procedure for generating a normalized
speaker independent model.

2.2. Speaker normalization using MLLR shift vec-
tor

The transformation matrix A is regarded as a frequency
warping representation, e.g. caused by vocal tract length
difference. The constant shift vector b is considered to rep-
resent a specific speaker characteristic[2], implying that it
can be used to remove speaker characteristic distribution.
Then, normalized SI models can be constructed from nor-
malized training data , in which shift vector b is subtracted
from observation vector o;. Figure 1 shows an example
of normalizing observation vectors using MLLR, and Fig-
ure 2 shows the procedure for generating a normalized SI
model using the speech data of M-speakers. Letting o(m) be
the raw observation vector of the training data for spea.ker
m, A'™) and 5™ denote the transformation coefficients of
speaker m. The normalized SI model can be obtained with
the following steps.

1. Estimate transformation coefficients (4™ and (™)
for each speaker from training data using the current
SI model.

2. Obtain the normalized observation vector &; by sub-
tracting b(™:

6 = o{™ — p(™), (8)

3. Re-train the SI model parameters by using the normal-
ized training data.

4. Iterate from Steps 1 to 3.

Note that the unnormalized SI model is used for the ini-
tial SI model in Step 1.

2.3. Speaker adaptation using MLLR and MAP
techniques
For speaker adaptation from the normalized SI model de-

scribed in 2.2, we try to combine the existing speaker adap-
tation techniques: MLLR and MAP estimation. Both the
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transformation matrix A and the shift vector b are esti-
mated from adaptation data that is based on maximum
likelihood criterion. Then, MAP estimates of the adapted
mean vector for a k-th Gaussian distribution can be ob-
tained by

we T = A e+ 0T 9
where
T
Z‘yk(t)A + I7s
AMAP t=1 (10)

T
Z‘Yk(t) + 7
Z‘Yk(t)b

T 3
Y )+
t=1

and I denote the n x n identity matrix and 7 indicates the
weighting of a priori knowledge to empirical data.

Figure 3 shows an example of mean vector adaptation us-
ing MLLR with MAP estimation. In the figure, the thick-
ness of a vector represents the total occupation probability
of Gaussian distributions (Eil vx(t)). If the total occu-
pation probability of a distribution is small, the adapted
mean vectors using MLLR with MAP remain close to the
initial mean vectors. On the other hand, if total occupa-
tion probability of a distribution is large, the mean vectors
become close to the adapted mean vectors by using MLLR
estimation. Thus, the mean adaptation is performed taking
into consideration the reliability of MLLR estimation.

In the proposed method, we use a full matrix and in-
dividually estimate transformation matrices for each Gaus-
sian distribution, while Digalakis et al. [11] and Zavaliagkos
et al. [12] have proposed similar techniques. Digalakis use
a diagonal matrix; in the paper of Zavaliagkos, the same
matrix were used for shared distributions.

MAP
bk =

(11)

3. EXPERIMENTS

3.1. Conditions

The proposed algorithm was evaluated by using a Japanese
26-phoneme recognition test set. In the test, 279 phrases
uttered by speakers that were not included in the SI model
training were used.

The experimental conditions are listed in Table 1. The
shared state triphone acoustic model (HMnet)[13] was used.
The shared state structure of HMMs was determined by
the SSS algorithm using 2620 isolated words uttered by one
male speaker. The number of shared states was set to 200
with one additional state pause model. The number of mix-
ture components per state was five. The SI model parame-
ters were trained by using Baum-Welch algorithm with the
50 sentences uttered by 15 speakers, which were selected
from among 285 speakers, and obtained by the speaker clus-
tering method [14]. The shared Gaussian distributions set
of MLLR estimation for normalization and adaptation (2
in Section 2) were constituted by all Gaussian distributions
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Figure 3. MLLR adaptation using MAP. Vector
thickness represents total occupation probability of
Gaussian distributions.

of HMMs. The training procedures are iteratively carried
out three times.

Table 1. Experimental conditions.
Analysis conditions
Sampling frequency: 12 kHz
Hamming window: 20 ms; Frame period: 5 ms
Analysis
16-order LPC-Cepstrum + 16-order ALPC-Cepstrum
+ log power + Alog power
HMM
200-state HMnet and 1-state HMM (pause)
trained using 2620 words of one speaker

Training data
9-males + 6-females selected from
146 males + 139 females
(50 Japanese sentences per person)

Adaptation/Recognition data

Speakers 3-males (MAU MMY MTM )
3-females (FAF FMS FYM)

Adaptation N phrases from 598 Japanese phrases

Recognition 279 Japanese phrases

3.2. Results

Table 2 shows the effectiveness of the speaker normalization
described in 2.2 for three male and three female speak-
ers. Using the normalized SI model, the average baseline
phoneme recognition error rate was reduced from 21.1% to
18.4% in comparison to the conventional SI model - the
error reduction was 12.8%. was achieved. Performance of
the proposed method was consistently better than that of
the conventional method for each speakers. In particular,
improved recognition performance was larger for speakers
who showed lower performance using conventional SI model
(FMS, FYM). This indicates that SI model normalization
achieves a more accurate classification.
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Table 2. Baseline recognition error rate comparison
between the normalized SI model (upper) and the
conventional SI model (lower) (%).
MAU MMY MTM FAF FMS FYM | Total
15.2 15.2 12.0 20.2 184 29.5 18.4
15.5 17.0 13.3 21.9 25.2 33.4 21.1

Table 3. Recognition error rates of MLLR with
MAP speaker adaptation from the normalized SI
model (upper) and the conventional SI model
(lower) (%).

speaker

# of adaptation phrases

3 5 7 10 20

MAU 158 15.0 14.9 15.2 13.7
164 15.7 149 153 143
15.3 146 144 142 13.6
17.3 16.0 16.0 15.3 14.6
MTM 11.8 11.8 11.0 109 9.9
13.3 13.2 12.8 12.3 10.6
FAF 19.0 16.8 15.6 149 14.1
21.8 19.8 185 16.5 15.1
FMS 19.5 185 17.7 16.6 13.9
26.3 23.9 224 200 15.6
FYM 26.6 23.9 23.2 214 194
29.6 24.0 254 242 19.6

Total 18.0 16.8 161 156 14.1
208 188 183 172 149

MMY

Table 3 shows the phoneme recognition error rates of
MLLR with MAP supervised adaptation (described in 2.3)
for the normalized SI model and for the conventional SI
model while varying the number of adaptation phrases
for six speakers. The adaptation training data was sam-
pled from 598 phrases that were different from the test
phrases. Considering the dependency on training data for
the speaker adaptation performance, the experiment was
repeated 3 times with different training data selections. 7
of the MAP estimation in Section 2.3 was set to 4.0 for
all distributions. As shown in the table, the performance
of speaker adaptation for the normalized SI model was su-
perior to that of the conventional SI model in all of the
adaptation data. This proves that the normalized SI model
has efficiently a priori knowledge. The proposed adaptation
method makes good use of this a priori knowledge by using
MAP estimation.

4. CONCLUSIONS

In this paper, novel SI modeling and speaker adaptation
based on linear transformation techniques were described.
In this method, a normalized SI model is generated by
removing speaker characteristics using a shift vector ob-
tained by the MLLR technique. In addition, we presented
a speaker adaptation method that combines the MLLR and
MAP techniques from the normalized SI model. Exper-
imental results for a Japanese phoneme recognition test
showed that the normalized SI model gave consistently bet-
ter performance than the conventional SI model. The pro-

Copyright 1997 |IEEE

posed adaptation method is more effective than the tested
conventional method regardless the amount of adaptation
data.
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