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ABSTRACT

Speaker adaptation is the process of transforming some
speaker-independent acoustic model in such a way as to more
closely match the characteristics of a particular speaker. It has
been shown by several researchers to be an effective means
of improving the performance of large vocabulary continu-
ous speech recognition systems. Until very recently speaker
adaptation has been used exclusively as a part of the recog-
nition process. This is undesireable inasmuch as it leads to a
mismatched condition between test and training, and hence
sub-optimal recognition performance. Very recently, there
has been a growing interest in applying speaker-adaptation
techniques to HMM training in order to alleviate the train-
ing/test mismatch. In prior work, we presented an iter-
ative scheme for determining the maximum likelihood so-
lution for the set of speaker-independent means and vari-
ances when speaker-dependent adaptation is performed during
HMM training. In the present work, we shall investigate spe-
cific issues encountered in applying this general framework to
the task of improving recognition performance on the Switch-
board Corpus.

1. INTRODUCTION

Speaker adaptation is the process of transforming some
speaker-independent (SI) acoustic model in such a way as to
more closely match the characteristics of a particular speaker.
Speaker adaptation has been shown by several researchers
to be an effective means of improving the performance of
large vocabulary continuous speech recognition (LVCSR) sys-
tems [3, 9, 8]. Several speaker adaptation paradigms have been
proposed and investigated in the recent past. Until very re-
cently, however, these schemes have been applied exclusively
as a part of the recognition process. This is undesireable
inasmuch as it leads to a mismatched condition between test
and training, and hence sub-optimal recognition performance.
Very recently, there has been a growing interest, both by the
current authors and others, in applying speaker-adaptation
techniques to HMM training; see, for example, Padmanabhan
et al [7] and Anastasakos et al [1] The latter works present
an iterative scheme, dubbed speaker-adapted training (SAT),
for determining the maximum likelihood (ML) solution for the
set of speaker-independent means and variances when speaker-
dependent (SD) adaptation is performed during HMM train-
ing. In the present work, we shall investigate specific issues
encountered in applying this general framework to the task of
improving LVCSR performance on the Switchboard Corpus.

The balance of this paper is organized as follows. In Sec-
tion 2, we briefly review the iterative solution for the param-
eters of the SI model, which has appeared previously in [1];
this development will culminate with the statement maximum
likelihood re-estimation formulae for the speaker-independent
means and variances. Section 3 presents the results of sev-
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eral experiments conducted on the Switchboard Corpus; these
experiments address issues pertaining to the optimal num-
ber of transformation parameters, the overall improvement in
LVCSR. performance achieved by SAT, the best way to ini-
tialize the SI model, and the effects of non-linear channels.
Our conclusions and plans for future work are presented in
Section 4.

2. SPEAKER-ADAPTED TRAINING

Here we give a brief review of the parameter optimization
process inherent in SAT; a more complete treatment is avail-
able in [1, 2). As with conventional HMM training, SAT be-
gins with the formulation of an auxiliary function which must
be maximized during the second stage of the expectation-
maximization algorithm—see Dempster et al [5]. This function
is conveniently expressed as
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where

uir and Dy are respectively the k** SI mean and co-
variance matrix;
= {pk,Di} is the parameter set defining the SI
model

=3, c(") is the number of frames aligned to the
k”‘ ST mean,;
:ci’)is the i** frame of speech data from speaker s;
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B = (Z Oz (’)) /c\®) is the k** mean for speaker
35
A is the speaker-dependent transformation matrix;

Cy. is the logarithm of the Gaussian normalization
constant.

In Eqn. (1) and what follows, we shall uniformly associate the
index k with a specific Gaussian component and the index s
with a given speaker. Our final objective is to jointly optimize
three sets of parameters: the speaker-dependent transforma-
tion matrices A®), the speaker-independent means ux and the
speaker-independent variances D;. Because of the coupling of
these components present in (1), to do so directly would entail
the simultaneous optimization of millions of parameters—an
intractable problem. This quandary can be avoided, however,
with the following stratagem: of the three sets of components,
hold two of the same constant and solve, via a closed-form so-
lution, for the optimal value of the third; iterate in this fashion
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over the three sets until the parameters converge to the desired
optimum. A guarantee of convergence can be established by
observing that the sub-optimization on each set of parameters
must improve the global likelihood function, provided only
that a fixed point has not been reached. In the limit of many
iterations, the optimum value of the auxiliary function will be
attained. Practical experience, however, indicates that a single
iteration over each set of parameters between re-calculations
of the auxiliary function yields a solution sufficiently close to
the optimum; hence, in the sequel, we shall present a training
paradigm based on this assumption.

The development necessary for determining the optimal
transformation parameters has been published elsewhere: in
the case of full or block-diagonal linear regression matrices the
appropriate reference is [3]; for the case in which the compo-
nents of the matrices are tied via an underlying conformal map
see [9]; other formulations which result in a linear transforma-
tion are also possible [3, 8]. Thus, in what follows, we shall
devote our attention exclusively to deriving the re-estimation
formulae for the SI means and variances which comprise the
heart of SAT, thereby illustrating the simplicity and intuitive
appeal of this technique.

Mean Re-estimation

The mean re-estimation formulae are immediately available by
taking the partial derivative of both sides of (1) with respect
to the SI mean yu; while holding all other terms fixed. The
result can be expressed as

pr = (AL AR) T AL ji (2)

where
ALAr = ) g0A@ DA ®)
A = ) A DY (4)

Upon consideration of the solution in Eqns. (2-4), it is ap-
parent that the estimation of the k** ML speaker-independent
mean is equivalent to the weighted least squares solution to a
system of overdetermined linear equations—the solution has
the form of the classical psuedo-inverse [4]. After some reflec-
tion, this comes as little surprise if we reason as follows: We
can form the vector

1t ~(2)t ~(S)t
—{M() () "'F‘i)}

by concatentating all SD means and the matrix
At - {A(l)t A(2)t A(S)t}

by concatenating all the SD transformation matrices. As is ap-
parent from these definitions, both fix and the matrix-vector
product Ay are elements of R™V*S), where N is the dimen-
sionality of the feature vector and S the total number of speak-
ers. The SI mean pi, however, is an element of RN, Hence,
upon considering Eqn. (1) and ignoring the Gaussian normal-
ization constant, it comes to light that we seek that pj achiev-
ing a minimum on the weighted Euclidean norm |}iix — Apy||
where the weighting is determined by the co-variance matrix
Dy. The optimal solution for yuy is given by the perpendicular
projection of fix onto the sub-space spanned by the columns
of A—see Strang [4, Section 3.4].

Variance Re-estimation

A similarly straightforward set of equations can be developed
for determining the optimal SI variances when all other com-
ponents are fixed. Let us begin with an expression for the ML
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lth

variance of the I** dimension of the k** Gaussian component

ob = ZZ(x(” ) e? )

We now perform the following steps: add and subtract pff,),

the I** component of the SD mean, to the quantity within
parentheses; expand the square; cancel any zero terms; and
define the SD variance

(-(s) (_,) Z clc: Ei) - ﬁfcsl))z (6)
This done, our final result is
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Training Paradigm

To illustrate the differences between conventional and speaker-
adapted training, we present a schematic diagram of the lat-
ter in Figure 1. As is apparent from the figure, SAT ex-
tends the conventional training paradigm by requiring the re-
estimation of SD adaptation parameters after each forward-
backward pass. Subsequently, these parameters are used to
re-estimate the SI means and variances as implied by Eqns (2-
4) as well as (6-7). In addition, the SD adaptation parameters
from the prior iteration are used to transform the SI codebook
before the forward-backward stage. A final difference between
SAT and conventional training stems from the fact that in
the latter, the training utterances can be partitioned into any
number of subsets suitable to expedite the training process;
usually the number of such partitions is determined by the
number of workstations available to perform the computation.
In SAT, however, the training utterances must be partitioned
according to speaker; hence one forward-backward pass with
subsequent parameter re-estimation must be performed for ev-
ery speaker in the set of training data. When training large
models from corpora with many speakers, the necessity of par-
titioning the utterances by speaker can lead to a requirement
on hard disk storage that is prohibitive. For this reasons, the
actual algorithm used to implement the SAT re-estimation for-
mulae is an area of current research.

In developing the re-estimation formulae above, the only
assumption made about the transformations was that of linear-
ity. To the knowledge of the authors, all adaptation paradigms
currently being studied adhere to this assumption [3, 9, 8].
Hence, our framework for SI mean and variance re-estimation
is broadly applicable.

3. APPLICATION TO SWITCHBOARD

The Switchboard Corpus is comprised of approximately 2,500
extemporaneous conversations between persons unknown to
each other recorded over standard telephone lines. This speech
itself is characterized by disfluencies of all sorts: restarts, filled
pauses and partial words. The nature of the speech makes for
a challenging problem when performing speech recognition in
general or speaker adaptation in particular; chief among the is-
sues that must be addressed in applying speaker adaptation to
a corpus such as this are the need to learn the characteristics of
a given speaker directly from the test data and the need to use
errorful transcriptions obtained from a prior recognition pass
in doing so. As we will discuss in greater detail below, non-
linear channel effects can have a profound effect on speaker
adaptation as well.
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Figure 1. Speaker-adapted training schematic.

Adaptation No. of % WER
Trans.
None 0 455
MLLR 1 43.2
MLLR 2 43.5
MLLR 4 43.5
MLLR 8 43.8
MLLR 16 44.3

Table 1. Word-error rate vs. nﬁmber of MLLR transforma-
tions.

Model/Adaptation % WER
TUnadapted ST model 40.5
Adapted SI model 374
Adapted SAT model 35.6

Table 2. Improvement in word-error rate provdied by speaker-
adapted training.

Number of Transformations

As the characteristics of a given speaker must be learned, not
from some transcribed enrollment data, but from the test data
itself, the number of transformation parameters which can reli-
ably be estimated during speaker adaptation are fairty limited.
Hence, prior to speaker-adapted training, it is necessary to es-
tablish an optimal operating point with regard to the num-
ber of transformations used—this can be accomplished most
expeditiously be adapting the conventional SI with different
numbers of transformations. Table 1 presents a sensitivity
study of the number of transformations versus word error rate
for a conventionally-trained phonetically-tied mixture system
(PTM) with 256 Gaussian components per phoneme. The
transformation in question is an MLLR matrix [3]. These re-
sults were obtained for recognition and adaptation on approx-
imately five minutes of speech per speaker. As is apparent
from the figure, a substantial improvement in accuracy is ob-
tained from the use of a single transformation matrix; use of
more transformation matrices only serves to reduce this initial
gain. This is very much at odds with what is observed on cor-
pora such as Wall Street Journal where there is either speaker-
dependent enrollment data avaialable or the unadapted error
rate is sufficiently low that several transformation matrices can
be estimated; see Sankar et al [6].

Recognition Performance

The results in Table 2 illustrate the reduction in word error
rate provided by speaker-adapted training. They were ob-
tained using the state-clustered tied-mixture (SCTM) system
used to run the 1996 Switchboard Evaluation, and illustrate
that SAT is an effective means of reducing WER on conver-
sational speech. In this case, the speaker-adapted training
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ST Model SAT Model
SI Seed SD Seed
Unadapted 45.2 45.7 53.0
Adapted: 1st Pass 43.5 42.6 42.6
Adapted: 2nd Pass N/A 42.0 41.8

Table 3. Recognition performance for SI model, SAT/SI
model, and SAT/SD model, both adapted and unadapted.

consisted of two EM passes, for each of which there was a
single sub-iteration over the SD transformation parameters as
well as the SI means and variances—see Figure 1. Speaker-
adapted was initiated beginning with a conventionally-trained
SI model. This same model was used for the unadapted de-
coding from which the errorful transcriptions necessary for un-
supervised adaptation were obtained.

Model Initialization

The goal of all study and investigation of speaker-dependent
adaptation is the development of an SI system that, with min-
imal or no enrollment data, is able to achieve recognition per-
formance comparable to an SD system trained on vastly more
data. This observation and others following from it led us to
speculate whether or not an SAT model trained from an SD
seed might outperform a comparable model trained from an SI
seed. Table 3 presents the results of our preliminary investiga-
tion in this area: we compare the performance of the SI model,
the SAT model trained starting from the SI model (hereafter,
SAT/SI), and the SAT model trained starting from the SD
model (hereafter, SAT/SD). In all cases, adaptation is unsu-
pervised and based on the errorful transcriptions from a pre-
vious unadapted decoding. All results are obtained from full
four-pass decoding with PTM-256 models on the new Switch-
board development test set. Based on these results, one might
draw the following conclusions:

1. While the performance of the unadapted SAT/SI model
degrades very little with respect to the unadapted SI
model, the performance of the unadapted SAT/SD model
is radically worse (ie, ~ 7.0% WER) than either.

2. After one alignment pass on the test data and subsequent
adaptation, both SAT/SI and SAT/SD models give nearly
identical performance. Both are approximately 1.0% bet-
ter than the adapted SI model. Because it starts from
much further back, however, this represents a greater gain
for the SAT/SD model (~ 10.0%) than for the SAT/SI
model (~ 3.0%).

3. After the second alignemnt pass on the test data and sub-
sequent re-adaptation, the SAT/SD may have a miniscule
advantage over the SAT/SI model.

The above would seem to indicate that, even though both
the adapted SAT/SI and SAT/SD models perform very sim-
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“Side || Sup. | Uns. | No Adpt. | Deg. | Chnl.
2347-A 25.4 22.6 25.1 Y
2347-B 31.6 35.0 38.6

3469-A 50.7 41.7 43.6 Y D
3469-B 49.9 | 46.5 50.1

3520-A 58.5 | 65.1 72.5

3520-B 306 | 28.9 30.4 Y
3968-A 55.5 | 52.4 54.5 Y D
3968-B 41.3 38.3 41.7

4167-A 35.1 39.6 39.9

4167-B 60.2 52.0 57.2 Y
4622-A 58.7 { 57.8 60.9

4622-B 46.9 40.2 41.8 Y D
4771-A 37.8 38.9 37.3

4771-B 56.3 56.3 60.7

Ave. 45.0 43.5 45.2

Table 4. Word error rate as a function of channel mismatch.

ilarly, they are actually quite different. This observation is
given additional support by comparing the likelihoods of the
respective unadapted models when initially aligned to the test
data using the putative transcriptions from a prior decode;
whereas the SAT/SI model generally exhibits a degradation
in likelihood of 2-5% as compared to the SI model, the com-
parable figure for the SAT/SD model is 40-50%.

Channel Effects

An initial indication that channel effects may be significant
on the Switchboard Corpus was obtained inadvertently when
we performed several supervised adaptation experiments us-
ing the conventional SI PTM-256 model. Many Switchboard
speakers participate in several conversations; this is true in
particular of all speakers in our current development test set.
The experiments in question were conducted by choosing a
second conversation from among those held out of the train-
ing set for each speaker in the development test set, and using
both it and its concomitant transcription as enrollment data
for speaker-adaptation. Upon examining the recognition re-
sults, we were suprised to find the overall supervised adapta-
tion performance to be virtually indistinguishable from that
of the unadapted SI model—see Table 4. Moreover, it was
worse than that of the adapted SI model where adaptation
was unsupervised on the test conversation. In searching for
an explanation for this anomaly, we broke down the recogni-
tion results by speaker; we found that for several speakers,
supervised adaptation on the held-out conversation degraded
performance, but unsupervised adaptation on the test conver-
sation improved it. These conversation sides are marked with a
“Y” in the “Degrade” column of Table 4. We then attempted
to correlate these anonmalous sides with channe! differences
between the test conversation and the held-out conversation
used for supervised adaptation; this was done by comparing
the phone numbers associated with the respective conversa-
tions in found in table supplied with the Switchboard Corpus,
a procedure that is less than conclusive as it does not account
for the possibility of multiple hand sets sharing the same ex-
tension. Nonetheless, the results were fairly compelling: Those
sides for which test and adaptation were performed on differ-
ent channels (i.e., different numbers) are marked “D” in the
“Channel” column. For each of these three conversation sides,
WER degraded by at least 1.0%, substantially more in two of
the three cases. This leaves three sides for which performance
degraded when supervised adaptation was performed on the
same channel as test; however, in all three cases the degrada-
tion was 1.0% or less, substantially less in two out of three.

These results are interesting inasmuch as for the purpose
of SAT, we currently lump all training set ('TS) conversations
for a given speaker into one batch and then estimate a single
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set of adaptation parameters for the lot. Based on this very
cursory analysis, it is apparent we should consider attempting
to classify the conversations for a given speaker in terms of
channel similarity, and grouping together only those that can
plausibly be said to be the same. As a first step, we might
hypothesize that the each conversation in the TS was collected
across a different channel, and proceed accordingly.

4. CONCLUSIONS

Speaker-adapted training is a recent extension to the conven-
tional EM-based training paradigm for continuous density hid-
den Markov models. In the limit, it provides a maximum like-
lihood solution for all parameters of the speaker-independent
model when speaker-dependent adaptation is to be used on the
test data. In this work, we have reported on our prelimary at-
tempts to apply SAT to the conversational telephone-quality
speech comprising the Switchboard Corpus. Beginning with
an unadapted word error rate in the neighborhood of 40%, we
found that an adapted SI model provides an improvement of
~ 3.0% absolute over the unadapted model, while an adapted
SAT model provides an additional improvement of ~ 2.0%.
We have also identified other issues that are candidates for
future work, among these the possibility of obtaining speaker-
dependent recognition performance by using an SD model to
initiate SAT, and the need to compensate for non-linear chan-
nel effects introduced standard telephone handsets and lines.
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