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ABSTRACT

In this paper we discuss the most recent evaluation of the
RPI language identification system by the National In-
stitute of Standards and Technologies (NIST). This sys-
tem is based on an acousto-phonetic approach where the
phonemes present in a language are identified by a hidden
semi-Markov model (HSMM). The HSMM was also devel-
oped at RP1. Knowledge of these phonemes provides us with
the necessary probabilistic framework for classifier design.
The classifier used in this system is designed in such a way
that language specific scores generated during an evaluation
form a random walk. Random walk theory has extensive
applications in ecology, metallurgy, chemistry and physics.
Until recently random walk theory has been primarily used
as a tool for the measurement of the territory covered by a
diffusing particle. We now show that random walk theory
can be used to effectively design a language identification
system.

1. INTRODUCTION

Over the past three years ([16], [11], [10], [9]) there has
been considerable effort put into development of a lan-
guage identification system by both government agencies
and telecommunication companies. Although the needs of
these two entities is quite different the impetus for both
government and industry to seriously pursue the develop-
ment of an automatic language identification system came
from the availability of a large corpus of multi-lingual speech
data. Beginning in the late 1980’s and continuing today
the Oregon Graduate Institute (OGI) has been collecting
multi-lingnal speech data. In 1993 the National Institute
ol Standards and Technologies (NIST) designated the OGI
database as the standard for evaluating language identifi-
cation algorithms. The standardized evaluation by NIST of
existing automatic language identification systems has led
to the development of a number of successful techniques.
The basis for each of the techniques found in existing au-
tomatic language identification systems can be loosely cat-
egorized as acousto-phonetic, prosodic, phonotactic, or vo-
cabulary. Acousto-phonetic systems rely on the phonetic
inventory of a language, prosodics deal with phonetic dura-
tion and intonation of a language, phonotactics refer to the
rules that govern the combinations of the different phones
in a language, vocabulary refers to the word inventory of

Copyright 1997 |IEEE

Random walk

classifier. Lang 1,...N

Random walk

classifier. Lang 1,.. N »| Fuse
Results

Random walk

classifier. Lang 1,...N

Figure 1: Language ID system, N languages.

a language. Existing language identification systems based
on the aforementioned categories can be found in literature:
acousto-phonetic (([5]), ([7])), prosodic ({[2]), ({6])), phono-
tactics (([16]), ([15])), large vocabulary continuous speech
recognition ([8]). Accurate language identification systems
have also been developed by combining multiple techniques
(14))-

In this paper we describe an automatic language iden-
tification system developed at RPI which is based on the
acousto-phonetic technique. The novelty of this system is
the technique used for classification. The classifier is de-
signed in such a way that language specific scores generated
during testing will form a random walk ([6}).

The remainder of this paper is formatted as follows: Sec-
tion (2.) gives an overview of the system. Section (3.) de-
scribes random walk theory and how it fits into classifier
design. Section (4.) present results generated by this sys-
tem in comparison to existing systems from the NIST 1995
evaluation ([11]).

2. SYSTEM DESCRIPTION

Figure (1) shows the system architecture for N languages.
The hidden semi-Markov model blocks are language specific
phonetic segmenters. The design of each HSMM is accom-
plished using a 50 phoneme subset of the Worldbet pho-
netic transcription ([1]). The HSMM is an ergodic model
and includes discrete durational probability modeling and
continuous observation probability density modeling (mixed
Gaussian). This HSMM was developed at RPI ({13]), and
((8D)-

For each phoneme identified by each language specific
HSMM a random walk classifier (section (3.)) was designed.
The results of each random walk classifier are fused and a
final decision is made on the language of the input speaker.
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3. RANDOM WALK THEORY

Random walk theory provides a direct measure of the ter-
ritory covered by a diffusing particle. Thus, this quantity
appears in such fields as ecology, metallurgy, chemistry, and
physics ([3]). This theory was used successfully in a speaker
verification problem ([14]) and has now been used success-
fully for language identification. For each language specific
HSMM and each phoneme a one dimensional random walk
was formed for each language. This one dimensional ran-
dom walk is generated by the normalized log likelihood ratio
test:
AL (xe) = M, (1)
oL,
where the observation vector x; is determined from a 16
dimensional cepstral vector calculated at time ¢. This cep-
stral vector is calculated at 12.5 msec intervals from a 25
msec frame of speech. The subscript L; denotes language i.
The log likelihood ratio test for each language is determined
by a degenerate two class test:
P T( L; lxt)
Ar;(xe) = log —7———. 2
Ll( ') g PT(U"¢‘~ nlxl) ( )

The parameters g1, and o1, are determined such that if
the incoming speech is language i the normalized log likeli-
hood ratio test A}, (x.) will produce a random variable with
zero mean and unit variance (the parameters p1; and oy,
are determined during training as a sample mean and sam-
ple variance respectively of the scores generated by equation
(1) when the input speech is from language L;). The lan-
guage models A} _(x:) where n 3 i will produce a random
variable having a non-zero mean, and a non-unit variance.
Summation of the random variables A} (x) over the num-
ber of observations (separately for each language model) we
form the random walk result ([12]):

e = Ny ixe). 3

r=0

where we have added the j subscript to denote the j'*
phoneme. This accumulated result produced by the lan-
guage model matching the language of the input speech
will walk around the zero value (regardless of the number
of A;,’s accumulated, this accumulated result will remain
in a small neighborhood of the zero value). Applying the
central limit theorem ([12]) we can conclude that the accu-
mulated score result ( equation (3)) for the model match-
ing the language of the input speech will be governed by
a zero mean Gaussian distribution where the variance will
be a function of the number of observations used to form
the summation (the variance will increase as the number of
observations increase). This is given by equation (4).

1 z2

f‘”L‘,j,((x) = \/—ZT;GIP(_EW)- (4)

The accumulated score results produced by the langnage
models that do not match the language of the input speech
will walk away from the zero value. Thus, the distance
between the accumulated score result and the zero value
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will increase as the number of observations used to form the
accamulated score result increases. Applying the central
limit theorem the accumulated score results for the models
that do not match the language of the input speech will
be governed by a non-zero Gaussian distribution where the
mean is an increasing function of the number of observations
and the variance increases with the number of observations.
This is given by equation (5).

1 (z - pt)?
c(2) = exp(— . 5
fooid®) = Cmmettm O
By combining the one dimensional random walks for each

language model from each phoneme we form an n dimen-
sional random walk wg;. given by equation (6):

=t
w 1,7 3o My(x(tar))
Wi;,t = E = E . (6)
~1
n e Z:”:I Ain(X(tar))

Note that the accumulated score result from each phonetic
segment § has been time normalized. The distribution of
wi;,c will then be a multivariate Gaussian, which will re-
main at the origin for the correct language discriminant
function, and will walk away from the origin for incorrect
language discriminant functions. Thus, all that is needed
to make a final decision about the language of the input
speaker is a Euclidean metric which will tell us how far
from the origin each language model has walked. The model
that has produced scores that are closest to the origin is the
model that best matches the language of the input speaker.
This decision rule is given by equation (7):

Iweiell < llweyell ¥ 5 # . (M

Figure (2) shows the resulting normalized score histogram
for English and Mandarin models when the input language
is English. The histogram has been determined from scores
generated by 45 observations. Note that the histogram re-
sult follows closely to what would be predicted by the ran-
dom walk theory (equations (4), and (5). Figure (3) shows
normalized score histograms generated by the Mandarin
model for the English speakers when 100 observations and
300 observations are available. We see that as the number of
available observations increases the distance from the zero
value increases (the mean of the distribution is an increas-
ing function of the number of observations). The variance
of the accumulated score distribution increases as well.

4. RESULTS OF THE 1995 NIST
EVALUATION

Table (1) shows the results of the March 1995 NIST lan-
guage identification evaluations. The results shown in this
table were generated from English vs. Mandarin (MA), and
English vs. Spanish (SP) for ten second speech segments
and whole story speech segments. The whole story test
required speech segments of more than 30 seconds.

NIST has also produced the ROC curves for an English
vs. Spanish test including figure of merit measurements
(FOM). These curves are shown in figure (4) for the ten
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Figure 2: English model A%, ;i,n(x:) and Mandarin model
M andarin(Xt) score distributions for English speakers.
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Figure 3: Mandarin model Ajfandarin(Xt) score distribu-
tions for English speakers, summations of 100 and 300
{frames.
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Table 1: 1995 Evaluation results from NIST, whole story
segments (approximately 30 sec.), and 10 second segments

(percent correct recognition).

Segment Duration | Whole Story 10 Second

Site MA SP || MA SP
AT&T 55 87 84 71
BBN 100 95 || NJA [ N/A
DRAGON N/A 100 || N/A 99
iTT 97 97 91 93
MIT - LL 97 87 97 86
LOCKHEED 63 100 66 95
NST ) 71 77 71 64
0GI 100 97 93 96
RPI 90 90 86 90

THCLISH SPOTTING - SPANISH AS BACKGROUND - TEN SECOND INTERVALS
— T

Detectisn rmte

L i A )

9 0.2 [N} [ K} 0.0 1
Talse alare rate

Figure 4: English vs. Spanish ROC curves, including FOM
measurements for ten second segments.

second speech segment tests. Although the ROC curves
tell us nothing about percent recognition accuracies they
provide us with a measure of how separable the languages
are to the system.
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