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ABSTRACT

This paper addresses the problem of speech recognition
with signals corrupted by additive noise at moderate SNR.
A technique based on spectral subtraction and noise can-
cellation reliability weighting in acoustic pattern matching
algorithms is studied. A model for additive noise is pro-
posed and used to compute the variance of the hidden clean
signal information and the reliability of the spectral sub-
traction process. The results presented in this paper show
that a proper weight on the information provided by static
parameters can substantially reduce the error rate,

1. INTRODUCTION

Due to the fact that the intervals with highest energies are
less corrupted by additive noise, it is reasonable to sup-
pose that these intervals provide more reliable information
for speech recognition than those intervals with lower ener-
gies. In [1] and [2] were proposed two weighted matching
algorithms to take into account the local SNR. Both algo-
rithms were tested with poorly correlated and white Gaus-
sian noises but with different noise cancellation techniques.
In [2] these two algorithms were tested in combination with
a noise cancellation neural net and it was shown they could
reduce the error rate. However, further experiments showed
that the improvements due to the weighted Dynamic Pro-
gramming algorithms depended on the neural net training
conditions, and suggested that the weighting coefficient w(t)
should take into account not only the segmental SNR but
the characteristics of the noise reduction method. Follow-
ing this idea, in [3] was proposed the use of a weighting
parameter based on reliability in noise cancelling. This pa-
rameter takes into account not only the local SNR but also
the characteristic response of the noise cancellation method
in the form of a mean distortion curve [3].

The contributions of this paper concern: a)combination
of weighted matching algorithms with spectral subtraction
(SS) technique; and b) analysis of SS in terms of reliability
in noise cancelling. The approach covered by this paper has
not been found in the literature and seems to be generic and
interesting from the practical applications point of view. In
this exploratory research, the technignes were tested with
DTW recognition algorithms on an isolated word recogni-
tion task. DTW was used because it is a simple and generic
algorithm which allows many noise cancelling techniques to
be compared without the need for extensive tuning of the
modelling. However, the authors believe the tecniques ex-
plored here could also be employed by a weighted Viterbi
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(HMM) algorithm previously proposed in [2].

2. SINUSOIDAL MODEL FOR ADDITIVE
NOISE

Given that s(1), n(s) and z(i) are the clean speech, the noise
and the resulting noisy signal, respectively, the additiveness
condition may be set as:

z(d) = s(i)+n(i) 1)

In the results presented in this paper, the signal was pro-

cessed by 14 Mel filters. At the output of filter 5 the noisy
signal is given by:

z;()) = s;())+n;(3) (2

and its mean energy in a frame by:

'“(‘) = $2() +n2(3) + 25;(3)n; () ®)

where z’(i) = ._1 z3(s), 32(1) = ﬁ 2‘_1 20, n3(i) =

; n3 (1), 23,(;)1;,(:) = L7 2s;(i)n;(i) and N is
ﬁle ength of the frames in num * samples.

If the speech signal and the noise are uncorrelated,
E(2s;()n;(5)) = 0 in a long term analysis, where E() cor-
responds to the expected value. However, the condition
2s;(1)nj(5) = 0 may not be satisfied in a short term anal-
ysis (ie. a 25 ms frame) and the noise is certa.mly not
perfectly stationary. Cmuently, once the noise is added
the clean signal energy, s}(i), becomes a hidden information
and cannot be recovered with a 100% accuracy. As a result,
s2(s) should be treated as a stochastic variable and could
be associated to a variance that indicates how accurate is
the estimation of the clean signal energy.

Initially, the signals s;(s) and n;(s) are considered sinu-
soidal components with frequency f;, the central frequency
of filter §, with a phase difference ¢. Under these assump-
tions,

2
3(5) = —;i +n3(1) + a,;an;cos(¢) (4)
where a,; and an; are the amplitudes of the speech sig-
nal and noise components respectively: s2(s) 10) = a? ;/2 and

nf(t) =a},; /2.
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3. CORRECTION OF THE SINUSOIDAL
MODEL

The sinusoidal model for additive noise represented by equa-
tion (4) assumes that the components s;(i) and n;(i) at the
output of filter § have frequency f; and a phase difference
¢ in a given frame. These assumptions are not perfectly ac-
curate in practice. Firstly, the 14 mel filters are not highly
selective, which reduces the validity of the assumption of
coherence between both components. Secondly, the phase
¢ between s,(¢) and n;(i} is not necessarily constant and
a few discontinuities in the phase difference may occur, al-
though many of them are unlikely in a short term analysis
(i.e. a 25 ms frame). However, the sinusoidal model rep-
resents the fact that there is a variance in the short term
analysis and specifies the relation between this variance and
the clean and noise signal levels. Due to the lack of coher-
ence between s;(3) and n;(5) and to the discontinuity in
the phase difference, the variance predicted by the model is
higher than the the real one for the same frame length, and
a correction should be included in (4). According to (4)
and considering that the random variable ¢ was uniformly
distributed between —x and =

V ar TR, 0] = 0.5 a2,

In order to estimate the correction of the sinusoidal
model, the coefficient r; defined as

o= 200 )

a.j an"

was computed with clean speech and only-noise frames. Ac-

cording to (5), Var[r;|s?(i), n3(s)] should be equal to 0.5

but due to the lack of coherence between s;(i) and n;(s)

and to the discontinuity in the phase difference,
Varl[r;]s3(5), n3(i)] < 0.5

and a correction factor k; needs to be included in (4):

% + m_'_ 8400, \/k_,-coa(n#) (6)

where k; is defined as

k; = 2Varlr;[s3(3), »3(i)]

4. CHANNEL VARIANCE

With the sinusoidal model for additive noise represented
by (6), the variance (or uncertainty) of the hidden informa-

tion s2(s) given the observed information z3(1) is estimated.

Solving (6) for a,; and using s%(i) = afj /2
armn 2

33() = ai;kjcos’ () +22(5) — n2(i) -

an; /Ejcos(8) [0k, kicos?(4) + 2(z3) - m3())  (7)

The equation above sets s3(i) as a function of 4, n?(i)
and z3(i):

550 = (4,930, 23() (8)
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The function g(¢,n3(s),z3(5)) was used to estimate

Var[log(s3(5))|z7(s)] considering that the random variable
¢ was uniformly distributed between —x and x and that
n?(s) is concentrated near its mean E{n?(i)]. The variance

Varflog(s3(3))|z3(3))] is given by:
Varllog((I()[=2()] =
Eflog? (33(5))|=3(9)] — E*[log(s2(0))I=2 ()]

where
Ellog? GO0 ~
o [ 1oe’lste, BN T Me
and

Eflog(33()I=I()] =

L [ voglo(s, BT T

-y

The integrals for estimating E[log? L?(T))QTJ] and
E[los(;?_('—))lm] were computed by means of Simpeon’s
rule with the interval (_-_-1, xbl_i!ided in 100 regular parti-
tions. The difference £%(5) — n?(1) in (7) was replaced with
o(Est(s3(5))) (see section 5) when evaluating g().

5. SPECTRAL SUBTRACTION
Spectral subtraction (SS) may be defined as

Ea@@@) = 76) - E@W) (9)

where Eat(%) is the estimation of the clean signal energy
and E(n%(s)) is the mean noise energy estimation made in
non-speech intervals. Due to the fact that 2s,(i)n(s) =0
may not be true in a short term analysis and that the noise
energy presents fluctuations, E'st(s?(i)) may be negative in

those channels with low SNR. In order to avoid negative
magnitude estimates a rectifying fanction o()is applied:

where ¢ is an arbitrary low constant.

6. WEIGHTED MATCHING ALGORITHMS

Some modifications were included in matching algorithms in
order to weight the reliability of the information extracted
from testing frames. A weighting coefficient w(t) (w(t) =
1, maximum reliability; w(t) = 0, minimum reliability) is
associated to each testing frame in order to be employed
in the modified vesions of the DTW and Viterbi (HMM)
algorithms [2]. The main idea behind the modifications
made on Viterbi (HMM) and DTW algorithms is that the
influence of a frame on decisions must be proportional to
its coefficient w(t). The proposed one-step weighted DP
algorithm was compared with the two-step DP algorithm
proposed in {1].
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Figure 1. Local condition.

The proposed one-step DP equation that corresponds to
the local condition shown in Fig.1 is given as follows :

G(t, r) =

t=2,r=1)W(t—2,r—1)42w(t—1)d(t—=1,r)+w(t)d(t,r
t—2,r=1)F2w(t=1)+w(t

. t—1,r=1)W(t—1,r—1)+2w(t)d(t,r
mn f—Tr~1) 42wt

t—1,r=2)W(t—=1,r—2)4+2w(t)d(t,r—1)+w(t)d(i,r
t=1,r-2)43w(t

and

{ W(t—2,r—1)+2w(t — 1) + w(t)
W(t, T) =
t

W(t—1,r—1)+2w(t
W(t-1,r—2)+3w 3

This DP equation takes into account the weight w(t)
frame by frame, and the calculation of the overall distance,
G(t,r), is affected by d(t,r) according to w(?) : if w(t) =1
(high reliability or local SNR), the weight of d(2, r) is max-
imum; if w(t) = 0 (very low reliability or local SNR}, the
importance of d(t,r) is zero.

The algorithm proposed in [1] consists of the following
two-step processing. Firstly, the optimal alignment path
cx = (t,7x),k = 1,2, ..., K is obtained using the ordinary
DP matching algorithm, where ¢ and rj are the frame num-
bers of the testing and reference patterns respectively. The
second step is the calculation of the global distance between
the utterances weighted by w(i:) along the optimal path
obtained at the first step.

7. RELIABILITY IN NOISE CANCELLING

It is reasonable to suppose that the uncertainty re-
lated to SS in a chanmel would be proportional to

Varflog(s3(5))[z3()}: the higher Varflog(s3(3))|z3(3)] is,
the less reliable is the information provided by Est(s?(1));
and the lower this variance is, the higher is the probabil-
ity of Est(m) being close to the clean signal informa-
tion a;)_ The weighting coefficient w(t) [2] (3], to be
used by the weighted algorithms (section 6) and that at-

tempts to measure how reliable is the result of the noise
cancelling method in a frame, could be related to the mean

Var[log(s?(i))|z%(s)] in all the channels by means of the
following function (Fig. 2) [3]:

1 if MeanVar < §
w(t) = { F;%W if MeanVar > § 1)
where
1 11 -
MeanVar = =3 Varllog(J()iz3()] (12)

=1
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Figure 2. Reliability coefficient vs variance.
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Figure 3. End-point constraints relaxation.

8. END POINT RELAXATION

The reliability in noise cancelling weighting was tested by
means of isolated word Dynamic Time Warping algorithms.
The isolated words were antomatically end detected using
an algorithm based on autoregressive analysis of noise [4]
and the average length of the testing utterances decreases
as the SNR gets more severe. Consequently, the endpoint
constraints on the DP algorithms were relaxed by means
of opening up the ends of the search region allowing the
alignment path to start by comparing the first frame of the
testing pattern with any of the first reference frames inside
the search window, and to end by comparing the last test
frame with any of the last reference frames inside the search
window (see Fig. 3). Due to the fact that the length of the
testing utterances presented a high variation, the sides of
the search window were made proportional to the utterance
length.

8. EXPERIMENTS

The proposed methods were tested with speaker-dependent
isolated word (English digits from 0 to 9) recognition experi-
ments. The tests were carried out employing the two speak-
ers (one female and one male) from the Noisex database [5].

The signals were low pass filtered by using a filter with
cut off frequency 3700 Hz, down sampled from 16000 to
8000 samples/sec, and high-pass filtered by employing a fil-
ter with cut off frequency 120 Hz. The data signal was di-
vided in 25ms frames with 12.5ms overlapping. Each frame
was processed with a Hamming window before the spectral
estimation. The band from 300 to 3400 Hz was covered
with 14 Mel 2nd order IIR digital filters. At the output of
each channel the energy was computed and SS was applied.
Finally, 10 cepstral coefficients were computed.

The results presented in this paper were achieved with
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Figure 4. Results for the car noise (Noisex

database).

1000 recognition tests for each SNR. The following configu-
rations were tested: the ordinary DTW algorithm [6] with
SS (DTW-SS); the proposed one-siep weighted DP algo-
rithm [2] with SS (1SW-SS); the two-step DP matching {1]
(2SW-SS) also with SS; and finally, the proposed one-step
DP algorithm with SS but without reliability in noise can-
celling weighting, w(t) = 1 (1S-SS). The constant § was
made equal to 43, a value that was shown to be suitable ac-
cording to some tests. For each configuration several search
window widths, k (Fig. 3), were tested and the one that
gave minimum error rate was chosen to plot the graphs
shown in Figs. 4 and 5.

10. DISCUSSION AND CONCLUSION

As can be seen in Figs. 4 and 5, the one step algorithm in
combination with the noise cancellation reliability weight-
ing gave the lowest error rate. This reduction in the error
rate was due to a) the ability of the one step algorithm in
normalising the overall distance to the length of the align-
ment path, and b) the information provided by the noise
cancellation reliability coefficient. The ordinary DTW does
not take into consideration which point of the start window
the optimal alignment path begins and was very sensitive
to the search window width. Consequently, when k was
increased (Fig. 3), DTW-SS and 2SW-SS increased the er-
ror rate after reaching an optimum search window. On the
other hand, the DP equation shown in section 6 computes
the overall weight W (s, j) step-by-step and was almost inde-
pendent to the alignment path length. As a result, 1SW-SS
should be compared with 1S-SS in order to separate the
improvement due to the alignment path normalisation and
the one due to the noise cancelling reliability weighting.
When compared with 1S-SS, 1ISW-SS showed reductions
of 58% and 40% in the error rate at SNR=6dB and 0dB
for the car noise. At SNR=18dB and 12dB both config-
urations gave error rate equal to 0 and 0.1%, repectively.
For the speech noise, 1SW-SS presented reductions of 75%,
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Figure 5. Results for the speech noise (Noisex

database).

76% and 46% at SNR=12, 6 and 0dB. At SNR=18dB the
error rate went from 0.3% to 0. As can be seen, the im-
provement due to the reliability weighting was higher for
the speech noise than for the car one. This must result
from the facts that the speech noise is less stationary than
the car noise so the estimation of noise energy is less ac-
curate, and that the reliability coefficient is also a function
of the local SNR so low energy intervals have low weight
in the pattern matching process. Therefore, noise cancella-
tion reliability weighting made the SS process more robust
to variations in the noise stationarity.
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