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ABSTRACT

Esophageal speakers, who produce a voice source by
bringing about a vibration of the esophageal superior
sphincter, must insufflate the esophagus with an air
injection gesture before every utterance, thus creating an
air reservoir to drive the vibration. The resulting noise is
generally undesired by the speakers. This paper describes
a method for the automatic recognition and rejection of
the injection noise which occurs in esophageal speech.

1. INTRODUCTION

Persons who have had laryngectomies have several
options for the restoration of speech, none completely
satisfactory. The artificial larynx, typically a hand-held
device which introduces a source vibration into the vocal
tract by vibrating the external walls, is the easiest for
patients to master, but does not produce airflow, so that
the intelligibility of consonants is diminished. Tracheo-
esophageal speech, which utilizes a prosthesis to divert
outgoing lung air into the esophagus, bringing about a
vibration of the esophageal superior sphincter, provides
airflow for consonants and permits utterances of normal
duration. However, it requires a surgically produced
connection between the esophagus and the trachea, and is
not suitable for some patients. Esophageal speech, which
requires speakers to insufflate, or inject air into the
esophagus[1], limits the possible duration between air
injection gestures, and is associated with an undesired
audible injection noise, sometimes referred to as an
"injection gulp". The effect of this noise is magnified
because esophageal speakers (like tracheo-esophageal
speakers) evidence low vocal intensity [2] and frequently
need amplification. This noise is undesirable for two
reasons: (1) listeners and speakers find it objectionable
and (2) in some speakers it can be mistaken for a speech
segment, diminishing intelligibility. This paper reports
on work to detect the injection noise, with the aim of
eliminating amplification during its production.

To the best of our knowledge, this problem has
never been addressed successfully, although considerable
work has been undertaken to enhance other aspects of
esophageal speech, particularly by Qi, Weinberg, Bi [3]
[4], and colleagues.
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2. OBJECTIVES

Since air injection is required prior to the start of
every utterance and typically occurs after every pause
before an utterance continues, it is possible to switch
amplification on only after injection noise has occurred,
and switch amplification off after a period of silence has
occurred, while speech is transmitted without
interruption. A gain control is set to either one or zero
depending on whether injection noise has been detected
with an associated silence, resulting in a device which is
designed to automatically remove undesired injection
noise.
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Figure 1. Characteristics of method for rejecting
injection noise.

3. DETECTION OF NOISE BY HMMS

3.1. Feature analysis.

One method for detecting injection noise is based on
relatively straightforward speech recognition and word-
spotting methods. It essentially treats the injection noise
as a word to be spotted. The basic scheme is shown in
Figure 2.

The signal is digitized by sampling at 20 kHz. One
copy of the signal is pre-emphasized and is used for
processing, while a second copy is switched on or off
depending on the analysis. Every 10 ms. a 256-point
FFT computation is performed on a 20 ms. window of
speech samples. The first 12 Mel-frequency cepstral
coefficients (MFCC) are calculated; these form the first
part of the feature vector for a speech frame.
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Figure 2. Flowchart of method for rejecting injection
noise based on the recognition of silence and
injection gulps.

This spectral information is supplemented by
additional information about rate of change of spectral
features, consisting of the derivatives (i.e. difference
cepstra). All together, 24 Mel-based cepstral coefficients
are extracted from each window of the speech signal.

Time waveform analysis supplements the cepstral
analysis. Specifically, a measure of signal energy is
computed, along with the energy rate-of-change, based on
a linear regression of 9 successive samples.

The speech vector is further augmented with two
extra feature points based on some special characteristics
of the injection noise. When a voiced speech signal
begins, it produces a negative pressure pulse. The
injection noise, on the other hand, begins with a positive
pressure pulse. The difference between the initial
negative pressure pulse of speech and the initial positive
pulse of the injection gulp is used to detect the injection
gulp. A combination of a microphone, amplifiers and an
analog converters is used to provide a non-inverted
signal. This is done either by utilizing an even number
of inverting amplifiers or by testing for an inverted
signal and adding an inverting amplifier if necessary.

One of the features used to detect the polarity
difference between injection noise and speech we have
named Amplitude Summation (AS). Amplitude
summation, computed once per 10 ms. speech window
in the present implementation, is a means for detecting
the initial deviation from zero of the speaker's signal.
The digitized waveform is summed over intervals ranging
from 1 to 20 milliseconds, depending on an adjustment
for individual speakers. The probability that an injection
gulp has occurred is greater when a positive value over a
given threshold occurs in the summed signal. This
threshold can be adjusted, depending on the associated
microphones and amplifiers used to record the signal.

A second measure for detecting the polarity is
differencing the center-clipped signal. To remove low-
amplitude ambient noise, the signal is center clipped.
The remaining signal is then differenced, to obtain the
first derivative, which is then smoothed with a running
average. A positive value on the result, immediately
following a zero value, tends to indicate the presence of
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injection noise, while a negative value tends to indicate
the presence of speech.

The three measures of signal energy, energy rate of
change, and Amplitude Summation are added to the 24
Mel coefficients, to make up the complete observation
vector. Thus, the acoustic front-end program creates a
27-component observation vector to represent the
features of each speech frame.

3.2 Decoding

A Hidden Markov Model (HMM)-based speech
decoder is used to find the optimal alignment of the
speech signal with a set of speech tokens. Two methods
are described.

In method one, five speech tokens are used,
including silence, gulp, noisel, noise2 and speech. In
method two, the speech token is replaced by a set of
units representing the basic phonemes of the language.
This method has more discriminative power for increased
accuracy, but requires more computation.

Each token is modeled with an HMM. The number
of nodes in the HMM units varies from 3, in the case of
simple models such as silence, to as many as seven for
certain phonemes. The number of gaussian densities per
mixture may be varied from 6 to 18 or more, depending
on the limits placed on computation time in the
application.

In the first implementation, five continuous mixture
density HMMs were trained on a subset of a corpus of
esophageal speech data, segmented and pre-labeled by
hand. The HMMs contained from 3 to 7 states, with 8
gaussian densities per mixture. The training procedure
was initialized by training two models on an 8 kHz
database of normal speakers: a speech model and a silence
model. The distributions of these HMMs were then used
to initialize the three other units. The five HMMs were
then re-trained on the training half of the esophageal
speech signals for the speaker, 42 recordings in all, using
Baum-Welch re-estimation. This stage of speaker-
adaptive training consisted of two iterations of isolated
segment training and two iterations of non-segmented
(i.e. embedded) training.

The HMM decoder program decodes the speech
signal frame synchronously, with a 10 ms. advance rate.
Each signal is processed by a front-end program into a
vector of speech frames, as described in 3.1. The Viterbi
algorithm [5] is used to estimate the probabilities of the
speech token HMMs with respect to these feature
vectors.

Finally, those segments for which the injection
noise (gulp) token have been labeled as output are
classified as gulps within the speech signal. The
esophageal speech is transmitted with a short delay to
permit processing, and amplified. When an injection
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gulp is detected, amplification is set to zero, so that they
are not transmitted.

4. RESULTS OF DETECTION OF
NOISE BY HMMS

The injection noise method was applied to a test set
of 40 utterances on which the HMMs were not trained,
but from the same speaker. The results are reported in
Table 1.

Two thirds of injection noise, or gulp, events were
detected successfully on the speaker. Of valid speech
segments, 5.4% of them were at least partially
incorrectly aligned with the gulp token (speech
misclassification error). These results were obtained on
40 test sentences of one speaker. Although it is likely
that these results can be improved by the use of more
training data and further tuning of the recognition
algorithm, some of the characteristics of the injection
noise led to the exploration of a different approach.

Number of Speech Units 239
Number of Injection Gulps 72
Gulp-detection Error Rate 33.3% (24)
Speech Misclassification Error 5.4% (13)

Table 1. HMM Experimental Results

5. DETECTING ESOPHAGEAL
INJECTION NOISE BY
MORPHOLOGICAL FILTERING

A different method for injection noise detection has
been developed, based on the observation that the noise,
which is produced by a gesture with a closed vocal tract,
has a strong, low-frequency emphasis. This characteristic
appears to be due to a double closure in the vocal tract of
at least some speakers, which strongly attenuates high

frequencies.

It uses a simpler, faster, and more effective
algorithm, which can be expected to become far more
effective once it has been properly tuned. The data is
sampled at 8 kHz. A 256-point FFT is computed, every
10 ms. and smoothed by a morphological filter {6, 7]
with a 10 point sliding window, removing all but the
gross features of the spectral curve.

Figure 3 shows the magnitude spectrum from the
center of an injection noise segment and the output of
the morphological filter.
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Figure 3. 256-point FFT from the center of an
injection noise segment and the result of passing
the FFT passed through the morphological filter.

Figure 4 shows the magnitude spectrum from the
center of the consonant /d/ (the segment spectrally
closest to an injection noise segment ) and the output of
the morphological filter (MF).
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Figure 4. 256-point FFT from the center of a /d/
segment and the result of passing the FFT passed
through the morphological filter.

The mean and the derivative of the filtered spectrum
are computed. The location and value of the two largest
peaks are identified. A signal segment is identified as
injection noise if the following criteria are met:

a) The largest peak is lower in frequency than the
second largest peak.

b) All points above 4 kHz are less than the mean.

The initial experiment testing this method was
performed on both data sets used for training and testing
the HMMs in the method described above. Again, results
are promising, and point to the need for further
development with more data.
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Number of Speech Units 235
Number of Injection Gulps 79
17.7% (14)
Speech Misclassification Error 15.7% (37)
Table 2. MF Experimental Results (Data Set 1)

Gulp Detection Error Rate

Number of Speech Units 242
Number of Gulps 72
16.7% (12)
Speech Misclassification Error 17.4% (42)
Table 3. MF Experimental Results (Data Test Set)

6. DISCUSSION

Gulp Recognition Error

The results obtained thus far were obtained with
relatively untuned algorithms. Furthermore, no attempt
has been made at present to combine some of the features
used in the HMM-based method with those used with the
method based on morphological filtering. It is therefore
likely that error reduction can be achieved. On the basis
of these results and the likelihood that they can be
improved, injection gulp rejection could work in a way
totally transparent to the user, by means of an electronic
switch that would only turn amplification on after a gulp
and a following short silence have occurred. Whenever a
speaker paused, the amplification would be turned off,
waiting for the injection gulp before turning it on again.
Although this method deals with only one aspect of
esophageal speech, it could, in theory, work without any
delay in the output signal.

Adjustments have to be made for speakers who use
multiple gulps in order to sufficiently insufflate the
esophagus. If a speaker consistently used double or triple
gulps, the method could be tuned to reject them.
However, speech with varying numbers of gulps could
only have the initial gulp rejected.
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