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ABSTRACT

When a speech signal is contaminated by additive noise,
its cepstral coefficients are assumed to be the functions of
noise power. By using Taylor series expansion with
respect to noise power, the cepstral vector can be
approximated by a nominal vector plus the first derivative
term. The nominal cepstrum corresponds to the clean
speech signal and the first derivative term is a quantity to
adapt the speech feature to noisy environment. A
deviation vector is introduced to estimate the derivative
term. The experiments show that the feature adaptation
based on deviation vectors is superior to those projection
based methods.

1. INTRODUCTION

Background noise is an inevitable source degrading the
performances of the speech recognizers [1]. To overcome
this problem, many efforts have been focused on
developing the robust systems where the noise effect is
minimized. Among these studies, D. Mansour and B. H.
Juang investigated the behavior of cepstral vector under
the effect of additive white noise [2]. In their research,
they found that the norm of cepstral vector shrinks but
the orientation is slightly affected when a clean speech is
contaminated by white noise. With these discoveries,
they proposed a series of robust distance measures which
were termed as the projection measures. These projection
measures were applied to the dynamic time warping
(DTW) based speech recognizer and also to the hidden
Markov model (HMM) based speech recognizer {5].

Since the orientation of a cepstral vector does not change
drastically under the additive noise effect, we may adapt
the clean cepstral coefficients along their changing
direction to minimize the distortion. Two problems are
raised in the adaptation scheme. One is how to find the
changing direction of cepstral vector due to additive noise,
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and the other is how to determine an optimal scaling
factor for adapting the clean cepstral vector. When a
speech signal is contaminated by additive noise, its
cepstral coefficients are assumed to be functions of noise
power. By Taylor series expansion with respect to noise
power, the cepstral vector can be approximated by a
nominal vector plus the first derivative term [3]). The
nominal cepstrum corresponds to the clean speech signal.
The first derivative term is a quantity to adapt the speech
feature to the noisy environment. This quantity is a
product of noise power and a derivative vector of
cepstrum with respect to noise power. The derivative
vector implies the changing direction of cepstral vector
due to additive noise in time domain.

To estimate the changing direction, two methods are
applied in this paper. One is by using the transformation
of LP coefficients [4], and the other is by taking
difference between the cepstral vectors of clean speech
and its noisy version. Once the changing direction for a
cepstral vector is determined, the adaptation can be done
by finding an optimal scaling factor during the
recognition phase. In general, the scaling factor is
relative to the signal to noise ratio (SNR). A maximum
likelihood estimation of scaling factor was adopted in this
study for simplicity.

This paper is organized as follows. In section 2, the
adaptation model is defined and the methods for
obtaining the deviation vector are also introduced. In
section 3, the proposed adaptation method is introduced
and its performance on the task of speech recognition is
examined by DTW based and HMM based speech
recognizers. Finally, a conclusion is made in section 4.

2. DEVIATION OF CEPSTRAL VECTOR
2.1. First order approximation

In the auto-regressive (AR) modeling of speech signal
x[n}, the LP coefficients {g;} are determined by solving
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the p linear equations, which can be written in the matrix
form as

Ra,=r, (0))
where
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and r., is m" auto-correlation of x[n], i.e.,

Fem = E(x[n]x[n+m]). When the clean speech signal

x[n} is contaminated by an uncorrelated white noise win],
i.e., yn] = x[n] + wln], the auto-correlation of y[n]

should be
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where 7 is the noise power, i.e.,
coefficients of y[n} are

a,=(R+ nI)"r’ 3
where I is the identity matrix. It is obvious that the LP
coefficients of noisy speech are functions of the noise
power 77. In other words, a, should be expressed as
a(n). From the formulation of LPC derived cepstral
coefficients,

c,=a +Z( )cka g 1<m<p @

the cepstral coefficients of noisy speech can be obtained
through a non-linear transformation of a(z). Thus, the
cepstral coefficients of noisy speech are also functions of
noise power. Using the first-order Taylor series
expansion around zero mnoise power, the cepstral
coefficients of noisy speech can be approximated by

o(7) = e(0) + (") oo (7-0), )

1 ="ry,. Thus, the LP

de(n) .
dn
noise power and can be derived by taking derivative of (4)

with respect to 77. Then we obtain
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where ——-'~ is the derivative of cepstrum with respect to

th

dcm(ﬂ) and a® = dam(7)

dn dn
components of derivatives of cepstrum and LP

where ) = are the m

coefficients, respectively. di:i(ﬂl],Fo can be obtained by
n
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taking derivative of (3) with respect to 7 and let =0,
ie.,
da(n)
dn

lp=o = -R7%r = —-R'a(0). %)

2.2. Alternative estimation of the first order
derivative terms

The first order approximation of cepstral vector is the
basis of our adaptation method. In this situation, ¢(7)
can be looked as a tracking of cepstral vector of real
noisy speech, and d—z(;-nl{,,zo can be considered as a

changing direction caused by the additive noise. However,
from the view point of curve tracking, ¢(7) might not be
propetly approximated along the direction of tangent such
as obtained by the derivative. Thus, an alternative
estimate of changing direction is proposed by the concept
of a cut line, and can be defined by i
de c(77)—¢c(0

(n)IfFOE ('72 c(0) ®)

dn n-0
where ¢(0) is a cepstral vector of a segment of clean
speech, {x[n]}, and ¢(7") is a cepstral vector of an
artificially generated noisy version of {x[n}}. Given a
noise power level 7", ¢(n") can be derived from the

noise contaminated auto-correlation domain using (2), (3)
and (4).

Substituting (8) into (5), the proposed approximation can
be also expressed as
¢=c(0)+aAc(n), &)

where o= nfn is an scaling factor and Ac(7’) is
defined by

Ac() = e(n7)—¢(0) 10
With definition (10), Ac(7n’) is termed as a deviation
vector in this paper.

3. FEATURE ADAPTATION FOR SPEECH
RECOGNITION

3.1. Adaptation schemes

A reference pattern is expressed by a cepstral vector and
its associated deviation vector. The adaptation scheme of
robust pattern matching can be done by finding a proper
scaling factor . The optimal scaling factor is the one
which minimizes the cepstral distance between a test
vector ¢y and an adapted reference cepstral ¢y, i.e.,

Qopt = argmin{ Dist(cr,Cr)}, 11)
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In this study, I’ norm is applied for the distance measure
2
Dist(er,&) =|cr (0) + @ der() —er| . (1D

Taking derivative of Dist(cr,8r) with respect to o and
setting the result to be zero, we have

(R (0) + @ deg (1)), Acg (1)~ (Acg (1), ¢r) = 0,13)

where (-, ) is an inner product operator. Therefore, an
optimal ¢ is calculated by the following equation
(Beg (1), (cr —cx(0)))

(Bex (), Ak (7)) - 14

dopt =

The cepstral distance between clean speech and its noisy
version increases as the added noise power increasing. An
effective adaptation scheme should be able to minimize
this distance. Here an experiment was conducted to show
the cepstral distance between the adapted clean speech
and its noisy version. The white Gaussian noise were
added to the clean speech signal in time domain to get its

noisy version. The SNR was estimated over whole test

speech. The proposed adaptation schemes were performed
in several cases. The one termed as Der was that using
derivative vector for the adaptation. The others, Dev(X)'s,
referred to that using deviation vectors which were
generated by (10). In which X indicates SNR, in dB,
which was required to produce ¢(7n"). The average
Euclidean cepstral distance between the adapted clean
speech and its noisy version are depicted in Figure 1.
Obviously, the proposed adaptation scheme can minimize
the distance significantly in both situations of using the

derivative and deviation vectors. Besides, it also shows
that the adaptation can perform better when using the
deviation vector than using the derivative one.

3.2. Adaptation in speech recognition

3.2.1. For dynamic time warping (DTW) based
speech recognizer

An experiment of isolated Mandarin digit recognition by
using a speaker-dependent DTW based speech recognizer
was performed to examine the performance of the
proposed adaptation method. 12-order LPC derived
cepstral coefficients were used as the feature vector. For
comparison, two recognition systems with different
strategies in distance measure were also examined. One
was a baseline system which was with original Euclidean
distance measure and the other one was with projected
distance measure (PDM). The proposed adaptation
schemes were performed in four case, as introduced in
the previous section. There were 800 utterances from 10
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males and 10 females used as the test patterns in the
experiment. The comparison for different systems at
various SNR are depicted in Figure 2. The proposed
adaptation schemes, Der and Dev(X)'s, improve the
accuracy of recognition significantly at all SNRs.
However, due to the inherent drawback of curve tracking
by a tangent line, the compensation effect is limited for
Der.

3.2.2. For hidden Markov model (HMM) based
speech recognizer

Another experiment was conducted in an HMM based
speech recognizer. In this case, the state deviation vectors
are needed for the adaptation scheme. The method for
obtaining the state deviation vectors is as follows. Using

the HMMs of clean speech, a Viterbi decoding procedure
is applied to all of the training utterances to find their

state sequences. According to the decoded state sequence,
the state deviation vector can be estimated by taking the
average of the corresponding deviation vectors, i.e.,

1N .
Au; = — Y Acik (1), (15)
N k=1

where Ac; . (n") was a deviation vector decoded to state i
and N, is the total number of Ac;,(7"). During the
recognition phase, the optimal adaptation factor, a,,, is

the one that maximizes the log likelihood function of a
given state. If the log likelihood function of a state is
modeled by a Gaussian distribution,

L(cs;0;,%;) =

#ln(zn) . éln(lz,-l) - é(ct _8)T = (e —6)), (16)

where i; = u;(0) + @ Au; is an adapted mean vector of

state i, and M is the dimension of the state vector. Taking

derivative of (16) with respect to « and setting the result

to zero, we obtain the optimal adaptation factor given by

(e ~u; (0))" 27" Awy a7
aTE A

Xopt =

In the experiment, the HMMs of clean speech were
trained by using clean speech data from 25 males and 25
females. The segmental-k-means algorithm was applied to
train the HMMs. Speech data from another 25 males and
25 females were used as the test data. The training data
and the test data were alternated for obtaining a confident
result. 12-order LPC derived cepstral coefficients were
used as the feature vector. The covariance matrices of
HMMs' states, X,'s, were all in the diagonal form for
simplicity. There were two mixtures on each state. An
HMM based recognizer without adaptation was used as a
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baseline for comparison. In addition, a system with

weighted projection measure (WPM) was also performed.

The comparison are observed in Figure 3. Similar to the
results of the DTW based speech recognizer, the
proposed method can improve the robustness significantly.
Besides, both of the results in Figure 2 and Figure 3
reveal that the recognition rate were not sensitive to the

pseudo noise power 7* which was needed in the
generation of the deviation vectors.

4. CONCLUSION

In this paper, we have addressed the compensation
method for the additive white noise by using the
derivative or deviation vectors. The derivative vectors are
derived from the transformation of the first derivative of
AR coefficients, while the deviation vectors are obtained
from the difference of the clean cepstrum and its artificial
generated noisy version. Both cases are examined by
experiments. The performance of using deviation vectors
seems superior to that of using derivative vectors. The
proposed method is also out performed the projection
method with similar computational cost.
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Figure 2, Error rate (%) for digit recognition with a
speaker-dependent DTW based speech recognizer
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Figure 3, Error rate (%) for digit recognition with a
speaker-independent HMM based speech recognizer
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