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ABSTRACT

In this paper we propose an extension to the classical
RASTA technique. The new method consists of classi-
cal RASTA filtering followed by a phase correction op-
eration. In this manner, the influence of the commu-
nication channel is as effectively removed as with clas-
sical RASTA. However, our proposal does not introduce
a left-context dependency like classical RASTA. There-
fore the new method is better suited for automatic speech
recognition based on context-independent modeling with
Gaussian mixture hidden Markov models. We tested this in
the context of connected digit recognition over the phone.
In case we used context-dependent hidden Markov mod-
els (i.e. word models), we found that classical RASTA
and phase-corrected RASTA performed equally well. For
context-independent phone-based models, we found that
phase-corrected RASTA can outperform classical RASTA
depending on the acoustic resolution of the models.

1. INTRODUCTION

For automatic speech recognition (ASR) over the telephone
it is well-known that the recognition performance may be
seriously degraded due to the transfer characteristics of the
handset microphone and the telephone channel [1]. In or-
der to reduce the influence of the linear filtering effect of
the communication channel, different channel normalisation
(CN) techniques have been proposed (for example [2, 3, 4]).
In our paper we present a new, extended version of the
classical RASTA filtering technique [3].

Classical RASTA filtering features two important proper-
ties: (1) attenuation at low modulation frequencies and (2)
enhancement of the dynamic parts of the spectrogram [3].
The first property explains why classical RASTA filtering
is such an effective method for CN: In the cepstral or log-
energy domain, linear filtering by a quasi-stationary com-
munication channel gives rise to an additive constant bias
term [1]. The attenuation at low modulation frequencies
effectively removes this DC-component. It has been sug-
gested that the second property is also benificial for good
recognition performance [3]. Recently, it was shown that
the enhancement of the dynamic parts of the spectrogram
obtained by classical RASTA represents a crude approxima-
tion of the effects of temporal forward masking in human
auditory perception [5, 6]. Thus, classical RASTA may be
viewed as a combination of CN and a crude model of human
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auditory time-masking.

The method we propose consists of classical RASTA fil-
tering followed by a phase correction operation. The phase
correction is chosen such that the frequency-dependent non-
linear phase-shift of the classical RASTA filter is compen-
sated, while at the same time preserving the original mag-
nitude response of the classical RASTA filter [7). In this
manner phase-corrected RASTA effectively removes the in-
fluence of the communication channel and at the same time
does not enhance the dynamic parts of the spectrogram (i.e.
does not model human auditory time-masking). In addi-
tion, phase-corrected RASTA removes the well-known left-
context dependency introduced by classical RASTA. There-
fore, one may expect that the new CN method is better
suited for ASR based on context-independent (CI) model-
ing.

This paper is organised as follows. In section 2 we de-
scribe details of the phase-corrected RASTA method. We
will focus on the non-linear phase distortion introduced by
classical RASTA and describe the method we used to re-
store the original phase. Next, in section 3, the signal
processing for our experiments is described. The telephone
database that we used for our experiments is discussed in
section 4. After this, the topology of the hidden Markov
models (HMMs), the way we performed training with cross-
validation and the recognition syntax during testing are
described in section 5. The results of our recognition ex-
periments are discussed in section 6. As we will see, these
experiments show that removal of the phase distortion of
the RASTA filter leads to a significant increase of recogni-
tion performance when using CI HMMs. Finally, in section
7 we sum up the main conclusions.

2. PHASE-CORRECTED RASTA

Consider the signal shown in the upper panel of Figure 1 (we
took a synthetic signal instead of a real MFCC coordinate
time series for didactic purposes). The signal is a sequence
of seven stationary segments (”speech states” ) preceded and
followed by a rest state (”silence”). Notice that the signal
contains a constant overall DC-component (representing the
effect of the communication channel). The RASTA filtered
version of this signal is shown in the middle panel of Figure
1. Two important observations can be made. First, the
DC-component has been effectively removed (at least for
times larger than, say, 70 frames). Second, the shape of the
signal has been altered.
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With regards to the shape distortion the following can
be noticed. First, the seven speech states of the signal that
had a constant amplitude are now no longer stationary. In-
stead, the amplitude for each state shows a tendency to drift
towards zero. Thus: RASTA filtering steadily decreases
the value of cepstral coefficients in stationary parts of the
speech signal, while the values immediately after an abrupt
change are preserved. This explains the observation that
the dynamic parts in the spectrogram of a speech signal
are enhanced by RASTA filtering[3]. As a consequence of
this drift, however, a description of the signal in terms of
stationary states with well-located means and small vari-
ances becomes less accurate. Second, the mean amplitude
of each state has become a function of the state itself as
well as the amplitudes of states immediately preceding it.
This is the well-known left-context dependency introduced
by the RASTA filter [3]. Because the absolute ordering of
signal amplitudes is lost, states can no longer be straight-
forwardly characterised by their mean amplitude (compare
speech states two, four and seven before and after RASTA
filtering in the upper and middle panel of Figure 1). For
this reason, RASTA is less well suited when using CI models
(cf. the remarks in [3]). Finally, we mention a third aspect
of the shape distortion for completeness (which we feel is
less important though). Due to the small attenuation of
high-frequency components, abrupt amplitude changes are
smoothed.

2 —

o = o 15;0*“.““2\::'0“) 20 30 %0 4w

Figure 1: Synthetic signal representing one of the cep-
stral coefficients in the feature vector. Upper panel: Orig-
inal signal containing a time-invariant DC-offset. Middle
panel: RASTA filtered signal. Lower panel: Phase cor-
rected RASTA filtered sigunal.

The complex frequency response of the classical RASTA
filter Hr(w) may be written as

Hp(w) = |Hr(w)|e/*7®), (1

with w the modulation frequency (in radians), |Hgr(w)| the
RASTA magnitude response and ¢g(w) the RASTA phase
response. The log-magnitude and phase response of the
classical RASTA filter with integration factor a = —0.94
are shown in Figures 2a,b for modulation frequencies in
the range 0 — 20 Hz. This range includes the 2 — 16 Hz
region, which has been shown to be most important for
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good recognition by humans [8]. From Figure 2b, it can be
seen that the phase response is non-linear for modulation
frequencies below approximately 3 Hz. As we will see, the
non-linear phase response of the classical RASTA filter is
the main cause of the shape distortions observed in the
middle panel of Figure 1.

In order to compensate the phase distortion of the
RASTA filter, while at the same time preserving the original
magnitude response, we followed the procedure suggested in
[9]. After the classical RASTA filter, an all-pass filter can
be applied such that its phase response ¢,.(w) is exactly
the opposite of the phase response of the RASTA filter

$pe(w) = —¢r(w). (2)

Thus, we obtain for the frequency response Hp.(w) of the
phase-correction filter

Hpe(w) = e I¢R(W) (3)

Applying this phase correction after the classical RASTA
filter, we have for the frequency response H,.r(w) of the
complete phase-corrected RASTA filter

Hper(w) = Hr x Hpe = |Hr(w)]. (4)

We implemented the phase correction filter Hyc(w) in
practice as a pole-zero filter. Thus, we solved for coeffi-
cients {b,a} that satisfy

e_jd,ﬂ(w) _ be + b1e"jw +...+ bqe_jqw
1+a1e79% +... + ape—ipw’

(5)

where ¢ (p) is the order of the numerator (denominator)
polynomial. We used a standard fitting procedure of Matlab
with ¢ = 1 and p = 7 to calculate the {b,a} coefficients [10].
Because the resulting pole-zero filter is unstable, we applied
the inverse of this filter to the time-reversed signal after
which a second time-reversal operation was performed.
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Figure 2: A. Log-magnitude response classical RASTA.
B. Phase response classical RASTA. C. Log-magnitude re-
sponse phase-corrected RASTA. D. Phase response phase-

corrected RASTA.

Figures 2c,d show the log-magnitude response and the
phase response of the phase-corrected RASTA filter. It can
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be seen that the new log-magnitude response is equal to the
original one and at the same time that the new phase curve
is flat in the region of important modulation frequencies.

The result of applying the phase correction filter in the
time-domain is shown in the lowest panel of Figure 1.
As can be seen, the shape of the phase-corrected RASTA
filtered signal resembles the shape of the original signal
much better compared to the RASTA filtered signal. The
phase correction (1) removes the amplitude drift towards
zero in stationary parts of the signal and (2) removes the
left-context dependency. In other words, phase-corrected
RASTA (1) does not feature enhanced spectral dynamics
and (2) is probably better suited for CI modeling. In or-
der to test the second point, we compared classical and
phase-corrected RASTA using context-dependent (CD) and
context-independent HMMs.

3. SIGNAL PROCESSING

Speech signals were digitized at 8 kHz and stored in A-law
format. After conversion to a linear scale, preemphasis with
factor 0.98 was applied. A 25 ms Hamming analysis window
that was shifted with 10 ms steps was used to calculate 24
filterband energy values for each frame. The 24 triangular
shaped filters were uniformly distributed on a mel-frequency
scale. Finally, 12 mel-frequency cepstral coeflicients (MFC-
C’s) were derived. In addition to the twelve MFCC’s we
also used their first time-derivatives (delta-MFCC’s), log-
energy (logE) and its first time-derivative (delta-logE). In
this manner we obtained 26-dimensional feature vectors.
Feature extraction was done using HTK v1.4 [11].

Because we wanted to focus on the difference between
phase-corrected and classical RASTA, we did not investi-
gate the use of other types of acoustic parameter repre-
sentations. We applied the CN techniques to the twelve
MFCC coordinates of the feature vector in this paper. We
used RASTA with integration factor -0.94 [3] and the cor-
responding phase-corrected RASTA method. We kept the
original values of delta-MFCC's, logE and delta-logE.

4. DATABASE

The speech material for this experiment was taken from the
Dutch POLYPHONE corpus [12]. Speakers were recorded
over the public switched telephone network in the Nether-
lands. Handset and channel characteristics are not known;
especially handset characteristics are known to vary widely.
None of the utterances used for training or test had a high
background noise level.

Among other things, the speakers were asked to read a
connected digit string containing six digits. We divided this
set of digit strings in two parts. For training we reserved
a set of 960 strings, i.e. 80 speakers (40 females and 40
males) from each of the 12 provinces in the Netherlands
(denoted trn960 in short). An independent set of 911 ut-
terances (tst911; 461 females, 450 males) was set apart for
testing. (In principle we again wanted to have 40 female
and 40 male speakers from each of the 12 provinces, but
the very sparsely populated province of Flevoland provided
only 21 female and 10 male test speakers). For proper ini-
tialisation of the models, we manually corrected automat-
ically generated begin- and endpoints of each utterance in
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the trn960 data set. We did not always use all training
and testing material. For most of the CI models we used
only half the amount of training data (i.e. 480 utterances,
trnd80; 240 females, 240 males). For cross-validation dur-
ing training we used a subset of 240 utterances taken from
the test set (tst240; 120 females, 120 males). For evaluation
of the models when training was completed we always used
the full test set tst911.

5. MODELS
5.1. Model topology

The digit set of the Dutch language was described using
either 18 CI phone models or 10 word-based (i.e. CD)
models. In addition, we used four models to describe si-
lence, very soft background noise, other background noise
and out-of-vocabulary speech, respectively. Each CI model
consisted of three states. Each CD model contained ex-
actly the same number of states as were used for the word
in the CI description. In this manner, the number of states
for a CD digit model ranged between 9 and 15. The to-
tal number of different states describing the digit HMMs
was 99 for the CD models and 56 for the CI models. All
HMMs were left-to-right, where only self-loops and transi-
tions to the next state are allowed. The emission probability
density functions are described as a continuous mixture of
26-dimensional Gaussian probability density functions (di-
agonal covariance matrices). In order to be able to study
the recognition performance as a function of acoustic reso-
lution, we used mixtures containing 1, 2, 4, 8 and 16 Gaus-
sians for the emission probability density function of each
state.

5.2. Training and recognition

The models were initialised starting from a linear seg-
mentation within the boundaries taken from the hand-
validated segmentations. After this initialisation, an em-
bedded Baum-Welch re-estimation was used to further train
the models. Starting with a single Gaussian emission prob-
ability density function for each state, 20 Baum-Welch it-
erations were conducted; the models resulting from each
iteration cycle were stored. Next, the optimal number
of iterations was determined using the tst240 data set.
For the set of models with the best recognition rate, the
number of Gaussians was doubled and again 20 embedded
Baum-Weich re-estimation iterations were performed. This
process of training with cross-validation was repeated until
models with 16 Gaussians per state were obtained.

During cross-validation as well as during recognition with
data set tst911, the recognition syntax allowed for zero or
more occurrences of either silence or very soft background
noise or other background noise or out-of-vocabulary speech
in between each pair of digits. At the beginning and at the
end of the digit string one or more occurrences of either
silence or very soft background noise or other background
noise or out-of-vocabulary speech were allowed.

6. EXPERIMENTS

In a first set of two experiments we trained CI HMMs for
classical RASTA with integration factor -0.94 (in short:
cIR(-0.94)) and the corresponding phase-corrected RASTA
(pcR(-0.94)) using train set trn480. We used test set tst911
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to determine the recognition accuracy of both CN meth-
ods as a function of the acoustic resolution. The accuracy
was defined as the one minus the quotient of the sum of
the number of substitutions, insertions and deletions, and
the total number of digits. The results are shown in Figure
3. It can be seen that pcR(-0.94) performed significantly
better than cIR(-0.94) when 8 and 16 Gaussians per state
were used. For 1, 2 and 4 Gaussians per state both methods
were equivalent. In [7] we reported a similar comparison us-
ing integration factor -0.98 and found that pcR(-0.98) was
significantly better for 2, 4 and 8 Gaussians per state. At
the time of this writing, an explanation for this difference
between our current and previous experiments remains an
open issue. Of these four different CN methods, best results
overall were obtained for pcR(-0.94) with 16 Gaussians per
state.
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Figure 3: Recognition accuracy for RASTA (X) and

phase-corrected RASTA (O) using CI HMMs.

In a second set of experiments, we trained CD HMMs
for clR(-0.94) and pcR(-0.94). We observed effects of un-
dertraining when we used train set trn480 for these models.
Therefore, we doubled the amount of training data and used
train set trn960. For the whole range of acoustic resolutions
studied, we found that both methods performed equally well
within the 95% confidence regions. This is what one would
expect, because performance of CD HMMs will not suffer
from the left context dependency introduced by clR.

Finally we note the following. It has been suggested [3]
that classical RASTA provides better recognition perfor-
mance because DC-components are effectively removed and
because the spectral dynamics are enhanced. Our analysis
shows that the enhancement of spectral dynamics is caused
by the phase distortion of the RASTA filter. When we re-
moved the phase distortion, we removed the enhancement of
spectral dynamics. However, we did not observe a degrada-
tion of recognition performance in our CI experiments. Qur
experiments suggest that removal of the DC-component of-
fered by classical RASTA is more important than enhance-
ment of spectral dynamics.

7. CONCLUSIONS

We have proposed a new extension to the classical RASTA
CN technique. In our proposal the classical RASTA fil-
ter is followed by an all-pass phase correction filter. In this

Copyright 1997 |IEEE

manner the left-context dependency introduced by the clas-
sical RASTA filter is removed, while at the same time DC-
components are still as effectively removed. Experiments
using CI HMMs for connected digit string recognition over
the phone, suggest that phase-corrected RASTA can out-
perform classical RASTA, depending on the combination
of the integration factor and the number of Gaussians per
state. Best results so far were obtained with the combi-
nation of phase-corrected RASTA(-0.94) and 16 Gaussians
per state. In addition, our results suggest that the ability
of RASTA to effectively remove the DC-component is more
important than the enhancement of spectral dynamics.
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