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ABSTRACT

This paper explores the modelling of phonetic segments
of speech with multi-resolution spectral/time correlates.
For spectral representation a set of multi-resolution
cepstral features are proposed. Cepstral features
obtained from a DCT of the log energy-spectrum over
the full voice-bandwidth (100-4000 Hz) are combined
with higher resolution features obtained from the DCT
of upper subband (say 100-2100) and lower subband
(2100-4000) halves. This approach can be extended to
several levels of different resolutions.

For representation of the temporal structure of speech
segments or phonetic units, the conventional cepstral
and dynamic cepstral features representing speech at the
sub-phonetic levels, are supplemented by a set of
phonetic features that describe the trajectory of speech
over the duration of a phonetic unit. A conditional
probability model for phonetic and sub-phonetic features
is considered. Experiments demonstrate that the
inclusion of the segmental features result in about 10%
decrease in error rates.

1 INTRODUCTION

In speech recognition, as in any pattern classification,
the choice of signal features has a substantial influence
on the separability of different classes of sounds and
hence on the word recognition error rate. This paper
explores the use of multi-resolution spectral/time
correlates for speech recognition.

Most speech recognition systems employ mel filterbank
cepstral coefficients (MFCCs), first difference (delta)
MFCCs, and second difference (delta-delta) MFCCs for
speech representation. A close variant of the cepstral
features, with good performance, is the cepstral-time
features derived from a 2-D DCT of stacked log-spectral
vectors [1]. Alternative features based on higher order
spectra, wavelets, and auditory models have been
proposed but so far have proved less successful.

Copyright 1997 IEEE

Naomi Harte

Ben Milner*

*British Telecom Research Laboratories, UK.
Ben@saltfarm.bt.co.uk

Cepstral features are derived from a linear
transformation (usually DCT) of the logarithm of the
output energies of a set of mel-scaled spectral channels.
Some optimisation and improvement in the feature
extraction process can be obtained by using a
discriminative optimisation criterion to estimate the
parameters of the linear transformation and even the
centre frequencies and the bandwidths of the channels.
This paper investigates the effects of using multi-
resolution features for speech recognition. The current
practice of using a single time window of about 30 ms,
and splitting the signal within the window to about 20-
25 frequency channels, is a best compromise between
the requirements for time and frequency resolutions and
low variance. An alternative is to employ features
obtained at several different levels of spectral
resolutions, and at sub-phonetic and phonetic durations.
A novel contribution of this paper is the introduction of
a set of multi-resolution cepstral features. The multi-
resolution cepstral idea is based on the hypothesis that
for many speech sounds the localised features of the
time-frequency trajectory of speech can provide crucial
clues for classification. Hence it is desirable that in
addition to the conventional cepstral features, a set of
features that describe the more localised features of the
log-spectral energy are also used.

The multi-resolution concept is extended to the time
domain through defining sub-phonetic and phonetic
speech features. To model speech at a segmental [1-4] or
phonetic level, appropriate features together with
statistical models for the inclusion of these features need
to be defined. In [2] a segmental model is proposed in
which the mean feature vector of each segment is taken
as the segment feature. Since a segment models a
section of the time-varying trajectory of speech in time
and frequency, it is expected that dynamic features
modelling the trajectory of each segment are a more
appropriate feature set.

In this paper speech features are derived at what are
effectively three different time resolutions. These
include two sub-phonetic time windows; one is the
cepstral feature vectors sampled with a time resolution
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of 5-10ms , and the second is the short-time dynamic
features averaged over the duration of at least 3 vectors
i.e. 15-30 ms. The other set of features are phonetic
features which span a time window of the order of the
duration of a phonetic unit which can be much above
that of the conventional time windows. A drawback of
using long windows is that the time window would often
contain signals from different adjacent phones. To avoid
this problem phonetic segment boundaries are required.
Hence one method for using the phonetic features is in
the second pass of the decoding algorithm using the ML
segmentation boundaries provided by the first pass. Two
issues explored in this paper are : (a) the choice of
phonetic and sub-phonetic features, and (b) the
statistical models for combination of phonetic and sub-
phonetic features.

2 MULTI-RESOLUTION SUBBAND CEPSTRAL
FEATURES

In this section we propose a set of multi-resolution
cepstral features. The motivation is to explore new
spectral correlates that may provide more separable
features for speech classification. Let the vector
sequence E=[E,, E,,..., E;] denote a sequence of L P-
dimensional mel-spaced log-filter bank energy vectors.
The N-dimensional feature vectors are extracted from
the P dimensional log-spectral energy features using a
P X N transformation as

X, =Az ¢}

Conventionally A is the DCT matrix. Alternatives to
DCT include the Karhunen-Loeve transform (KLT), and
the linear discriminative analysis (LDA) transform. A
relatively recent method is HMM-based state dependent
transformation of log-spectral energy features [6].

The transformation A in eq(1) yields a set of features
that are averaged over the entire speech bandwidth. An
alternative is to combine the cepstral features extracted
from the whole signal bandwidth, with those extracted at
subbands, for example from say the upper and the lower
half bands. Hence the multi-resolution cepstrum
proposed here can be expressed as a combination of a
set of linear transformations as

X, =[AZ, (A2 ApZim ) (AuFia - AuFinarAseEing AssEra)re |
@
where A,Z,, yields the cepstral features over the entire
banwidth, (A ,Z,, A»Z,) yields cepstral features over,
the lower half and the upper half subbands, and (4, E,,
A2 AuEs, AyE, ) yields the features over four
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subband quadrants as in Figure(1). The subscript
notation ij refers to the i® band given that the spectrum
has been divided into j subbands.
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Figure 1 - The first three DCT basis functions in a 3-level
multiresolution cepstral analysis.

Figure(1) is an illustration of the multi-resolution
feature extraction process where the voice band is
progressively divided first into 2 subbands and then into
4 subbands respectively. The figure also illustrates the
DCT basis functions for each subband in eq(1). The first
cepstrum coefficient in Figure(l.a) taken over the entire
spectrum gives a measure of the slope of the spectrum,
alternatively it can be interpreted as the log ratio of the
weighted geometric mean of the energy in the lower
half-band to that in the upper half-band. The first
cepstral coefficients from the two subbands in figure
(1.b) give more detailed measures of the slopes of the
spectra in the upper half-band, and the lower half-band
respectively. In figure(l.c) the multiresolution pyramid
is extended down to a third level. The higher resolution
features give a set of correlates that can be used as an
alternative to the higher coefficients in the conventional
cepstrum.

3 PHONETIC/SEGMENTAL FEATURES

Continuous speech recognition systems model the
acoustic speech signals as a string of elementary
phonetic symbols. Each phone, or its triphone variant, is
typically modelied by a three-states HMM. As each
phone is a relatively short speech segment with a distinct
spectral-time composition, the use of a segmental model
is appropriate for the phonetic units. A segmental model
avoids the finite state quantisation involved in the
HMMs, and models the segments as a continuous signal
process. However, there are two main drawbacks
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associated with a segmental model when compared to
HMMs : (1) HMMSs can easily model the variation in
speech duration through the self-loop state transitions, in
contrast for a segmental model the segment length has to
be normalised and therefore some knowledge of the
segment boundaries are required, (2) In continuous
speech recognition, HMMs can model the various
probable boundaries of phonemes, whereas segmental
models need to estimate the boundaries.

A solution to this problem is a two stage method of
combination of HMMs and segmental models. In the
first stage, using conventional features, speech is
decoded to obtain the N-most likely candidates and their
most likely phonetic boundaries. In the second stage the
estimates of the phonetic boundaries are used to extract
phonetic features, which will then be employed as an
additional set of features in a revaluation of the
probability score for each phone. Let X(¢,T)=[x(), ..., x
(t+T-1)], denote a feature vector sequence of length 7.
The variables ¢ and T can be estimated from an ML
estimation of the underlying phonetic boundaries in a
first pass of the Viterbi decoding of speech features. The
phonetic features can be formulated as

where B is a TxT, resampling matrix for normalisation

of the phone duration from T samples to a constant
preseleced value of T,, and A is a transformation matrix
for extracting a set of features. Phonetic features
normally span a sequence of several cepstral vectors,
and hence dynamic features that describe the temporal
trajectory of the cepstral vectors in a phoneme may be
considered as appropriate features for speech
representation at the phonetic or segmental level. A
convenient choice for A is the DCT. Alternatively the
matrix A can be obtained using a linear discrimination
analysis (LDA), or from a discriminative training of
HMMs {7].

3.1 SEGMENTAL PHONETIC HMMS
For an HMMs 4/, the log-likelihood of a sequence of T
feature vectors, along a state sequence s,, is given as

T-1 T-1
log f(XIM ;. ,5)=Y logay,_, + ¥ log f(x(t)}M ;.5,) (D)
=0 t=0

Eq(4) assumes that within each state the features are
independent and identically distributed. The correlation
across the states are modelled through the Markovian
state transitions parameters a, . - In this section

conditional probability models are used to capture the
dependencies between cepstral vectors and phonetic or

Copyright 1997 |IEEE

segmental features. Conditional probability models have
been used in HMMs for inclusion of the correlation of
successive speech cepstral vectors {7].

If we also include a phonetic feature X, in the model
then the log likelihood becomes

T-1 T-1
logf(X,x,IMk,s)=Zlogasl_‘sl + 3 log f(x(WMy, Xp,5,)+Tlog f(Xe)
1=0

y(m)

=0
5)
For a multi-variate Gaussian density the conditional
mean vector and the covariance matrix are given by

,U(x|xr)=£[xllf]

(6)
=:u'x + Zxxfz;i,x, (ZQ _.u'x,,)
—_ -1
z (xlxs) ‘Ex,x, - “:xx, Ex,x, Ex,x M

The phonetic features can be used as additional features
in a second pass of speech decoder.

4 EXPERIMENTAL RESULTS

An important aspect of speech processing is to capture
the nonstationary character of the signals. The concept
of a nonstationary spectrum may be more appropriately
associated with the time-variations of the output of a
digital filter-bank because unlike the Fourier transform,
the input to a filterbank is not assumed to be short-time
stationary. The feature extraction system used in this
paper is based on a mel-scaled filter bank shown in
figure(2). The spectral features are obtained from
averaging the output of the filter bank over a time
window of about 10-20 ms. Successive overlapping
frames of log spectral energy are stacked to form a
spectral-time matrix of a duration of 32 ms. A duration
of this order is considered to represent speech at a sub-
phonetic level. Each log spectral-time matrix is
converted via a 2-DCT to a cepstral-time matrix.
Phonetic features are derived as the trajectory of sub-
phonetic features over the duration of a phone.
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Figure 2 - A filter bank implementation of cepstral-time
feature extraction.
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The following experiments are based on two databases;
an isolated digit data base, and a continuous data base of
1000 talkers recorded over the telephone trunk network.
The continuous-speech data base is modelled using
phonetic units. The speech was sampled at 8 kHz, and
the subband processor of figure(2) was used for feature
extraction. The filter consists of 20 mel-scaled channels.
Table-1 shows the experimental results for the isolate-
digit data base. Table-2 shows the experimental results
for the continuous speech database. The segmental
features are compared with those for the conventional
cepstral plus delta and delta-delta features. The table
shows the followings; (row 1) when 12 conventional
cepstral coefficients extracted over the full voice band of
0.1-4 kHz are used, (row 2) multi-resolution cepstrum
using 6 conventional features, plus 3 features from each
of the lower and upper half subbands, and (row 3) multi-
resolution cepstrum using 4 conventional cepstral
features plus 4 from each of the lower and upper
subbands. From table-1, it is encouraging that multi-
resolution cepstral features compete well with the more
conventional cepstral coefficients.

Table-1
Subbands (kHz) Coelf c+dc+ddc | Segmental
Pattern Features
0.1-4 12 95.5 9/.6
(0.1-4),(0.1-2,2-4) ] 6+(3, 96.2 9/.6
(0.1-4),(0.1-2,2-4) |4+(4,4 96.3 .
Table-2
Subbands (kHz) Coefl’ Segmental
Pattern | c+dc+ddc | Features |
0.1-4 12 ~66.8 .
(0.1-4), (0.1-2, 2-4 6+(3,3) 6/.1 73.7
(0.1-4),(01-2,2-4) |4+(4,4)] 6/3 73.9
For the continuous database, table-2 clearly

demonstrates that the use of long term segmental
features provides substantial improvement in accuracy.
Table-3, like table-2, presents some results for the
continuous speech data base. The main difference is that
the multi-resolution approach is extended to 3 levels as
in fig(1).

Table-3
Subbands (kHz) Coelf Pattern Segmental
c+dc+ddc | Features
0.1-4 16 6/.2 73.6
(0.1-4), (0.1-2, 2-4), 1 4 +(4,4)+(1,1,1,1) 67.6 738
{0.1-1,1-2, 2-3, 3-4)
(0.1-4), (0.1-2, 2-4), | 4 +(2,2)+(2,2,2,2) 67.9 73.97
(0.1-1,1-2, 2-3, 3-4)
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CONCLUSION

Further improvements in the performance of speech
recognition systems is likely to result from advances in
the modelling of phonemes and speech features. The
work described in this paper explored a new approach to
speech feature extraction. In proposing a multi-
resolution approach the aim is to obtain a new set of
correlates in time and frequency for improved speech
recognition. Experiments demonstrated that the multi-
resolution cepstrum compares well with the more
conventional method, and that the use of segmental
features results in a significant improvement in speech
recognition. To obtain the full potential benefits of
phonetic features the feature extraction and the
training/decoding processes need to be well integrated.
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