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ABSTRACT

Frequency warping approaches to speaker normal-
ization have been proposed and evaluated on vari-
ous speech recognition tasks [1, 2, 3]. These tech-
niques have been found to significantly improve per-
formance even for speaker independent recognition
from short utterances over the telephone network.
In maximum likelihood (ML) based model adapta-
tion a linear transformation is estimated and ap-
plied to the model parameters in order to increase
the likelihood of the input utterance. The pur-
pose of this paper is to demonstrate that signifi-
cant advantage can be gained by performing fre-
quency warping and ML speaker adaptation in a
unified framework. A procedure is described which
compensates utterances by simultaneously scaling
the frequency axis and reshaping the spectral en-
ergy contour. This procedure is shown to reduce
the error rate in a telephone based connected digit
recognition task by 30-40%.

1. INTRODUCTION

A major hurdle in building successful automatic speech
recognition applications is non—uniformity in performance
across a variety of conditions. Many successful compen-
sation and normalization algorithms have been proposed
in the literature dealing with different sources of variabil-
ity. Typical examples in telecommunications applications
of speech recognition include inter-speaker, channel, envi-
ronmental, and transducer variability. In practice, a speech
utterance may be simultaneously affected by many sources
of variability, and there may be many acoustic correlates
associated with a given source of variability. As a result, it
is important that different procedures for compensating for
acoustic distortions be tightly coupled with one another.
This paper attempts to address how linear model trans-
formation and speaker normalization by frequency warping
can be implemented as a single procedure to compensate
for these sources of variability.

Model adaptation techniques have been used for im-
proving the match between a set of adaptation utterances
and the hidden Markov model (HMM) used during recog-
nition. The parameters of a linear transformation are esti-
mated using a maximum likelihood criterion and the trans-
formation is applied to the HMM parameters [4]. A com-
mon problem among these techniques is the existence of
speakers in a population whose speech recognition perfor-
mance does not improve after adaptation. This can be es-
pecially true for unsupervised, single utterance based adap-
tation scenarios. It is generally thought that only those
distributions in the model that are likely to have generated
the adaptation observations have a chance to be mapped
to the target speaker. Therefore, if the “match” between
the model and the adaptation utterance is not reasonably
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“good” to begin with and the number of adaptation utter-
ances is limited, then the utterance cannot “pull” the model
to better match the target speaker.

Speaker normalization by frequency warping has been
used for estimating a frequency warping function that is
applied to the input utterance so that the warped utter-
ance is better matched to the given HMM model. As is the
case for model adaptation, there exists a subset of utter-
ances for which frequency warping does not improve per-
formance. The ineffectiveness of speaker normalization for
these utterances is thought to be due to the interaction of
other sources of variability in the process of estimating the
“best” warping function. If both the model adaptation and
speaker normalization procedures are limited by the initial
relationship between the HMM model and the input utter-
ance, then perhaps a solution to this problem is to search
for an optimum warping function and an optimum model
transformation in the same procedure. This is the principle
focus of this paper.

The paper is organized as follows. First, the frequency
warping based speaker normalization procedure is described
in Section 2. In Section 3, a combined procedure for fre-
quency warping and model adaptation is described and ap-
plied to a single utterance based adaptation paradigm. A
discussion of the application of frequency warping as ap-
plied to childrens’ speech recognition using HMM models
trained from adult speakers is given in Section 4. Finally,
discussion and summary is provided in Sections 5 and 6.

2. SPEAKER NORMALIZATION USING
FREQUENCY WARPING

In [3], an efficient frequency warping algorithm for speaker
normalization was proposed and applied to telephone based
speech recognition. The frequency warping approach to
speaker normalization compensates mainly for inter-speaker
vocal tract length variability by linear warping of the fre-
quency axis by a factor . By applying frequency warp-
ing during both training and recognition it was shown that
word error rate can be reduced by approximately 20%. The
frequency warping algorithm described in [3] is briefly pre-
sented next.

Frequency warping is implemented in the mel-frequency
filterbank front-end by linear scaling of the spacing and
bandwidth of the filters. Scaling the front-end filterbank is
equivalent to resampling the spectral envelope using a com-
pressed or expanded frequency range. The speaker normal-
ization algorithm works as follows. For each utterance, the
optimal warping factor & is selected from a discrete ensem-
ble of possible values so that the likelihood of the warped
utterance is maximized with respect to a given HMM and
a given transcription. The values of the warping factors in
the ensemble typically vary over a range corresponding to
frequency compression or expansion of approximately ten
percent. The size of the ensemble is typically ten to fifteen
discrete values. Let X® = g,(X) denote the sequence of
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cepstrum observation vectors where each observation vec-
tor is warped by the function ga(), and the warping is as-
sumed to be linear. If A denotes the parameters of the HMM
model, then the optimal warping factor is defined as

& = arg max P(X%|a, A, H) (1)

where H is a decoded string obtained from an initial recog-
nition pass. Finally, the frequency warped observation vec-
tor X® is used in a second recognition pass to obtain the
final recognized string. Note that the procedure is compu-
tationally efficient since maximizing the likelihood in Eq. 1
involves only the probabilistic alignment of the warped ob-
servation vectors X* to a single string H.

3. SPEAKER NORMALIZATION AND
SPEAKER ADAPTATION

3.1. Providing a Larger Ensemble of Alternatives

This section describes a simple method for implementing a
parametric linear transformation on the HMM model and a
parametric frequency warping of the input utterance under
a single statistical framework. The method can be inter-
preted as a means for expanding the ensemble of alterna-
tives that are being evaluated during adaptation thus ob-
taining a better match between the input utterance and the
model.

In Section 2, frequency warping was described as a
method of transforming an utterance according to a para-
metric transformation g () in order to maximize the likeli-
hood criterion given in Eq. 1. There is a large class of max-
imum likelihood based model adaptation procedures that
can be described as parametric transformations of the HMM
model. For these procedures, we let A, = h-()) denote the
model obtained by a parametric linear transformation k().
The form of the transformation depends on a number of is-
sues including both the nature of the sources of variability
and the number of observations available for estimating the
parameters of the transformation. However, the same max-
imum likelihood criterion is used for estimating v as was
used for estimating o:

¥ = argmax P(X|v,Ay, H) . 2)
¥

Our goal is to combine the frequency warping and model
adaptation methods in a maximum likelihood framework.
The optimal parameters of the model transformation 4 and
the frequency warping & can be simultaneously estimated
so that

{d5;\7} = arg ?13')§ P(Xala"y, A"I’IJ) . (3)
o,y

The potential of this class of procedures was investi-
gated in the context of speaker adaptation from single utter-
ances. In this case, ky() is a set of transformations applied
to the means of the model distributions or the observation
sequence. Two procedures are considered for implement-
ing the combined optimization implied by Eq. 3 and are
discussed next.

The first of these implementations is illustrated by the
block diagram in Fig. 1. An ensemble of HMM models
is generated A%, where each model is trained from observa-
tion vectors warped according to ga(). The optimum model
transformation is obtained by searching over an ensemble
of “warp class” models, A7, ¥k = 1,..., K, and also over
a set of N-best string candidates Hn, n = 1,...,N. In a
separate study, Matsui and Furui estimated the transforma-
tion, h+(}), by searching over the set of N-best candidates
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Figure 1: Single utterance based speaker adaptation where
optimum model transformation is computed with respect
to an ensemble of models and an ensemble of word tran-
scriptions.
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Figure 2: Single utterance based speaker adaptation where
optimum transformation is applied on the observation se-
quence.

alone [5]. For each model and each string candidate, we
solve for the 44,y, which maximizes P(X|X3‘,Hn,'y). Oof
course, this procedure results in an increase in computa-
tional complexity by a factor of KxN, the size of the com-
bined ensemble of warp class models and N-best candidates
respectively.

A second more computationally efficient implementa-
tion of the combined optimization procedure can be used for
simple definitions of the model transformation, k(). If the
model transformation corresponds to a single fixed trans-
formation applied to all HMM means, it can be applied to
the observation sequence instead of the HMM.! Similarly,
instead of building “warp class” models, frequency warping
can be applied directly on the observation sequence during
testing This simplifies significantly both the computational
load and the memory requirements of the speaker normal-
ization and adaptation procedure. As before, we attempt to
simultaneously optimize the transformation with respect to
a and v by maximizing the likelihood P(h(X*)|a, v, H, A).

The procedure is described in Fig. 2. For each warping
index a and each string candidate H,, we solve for the
Ya,H, which maximizes P(h,(X“)|a,v, Hn, A). Next, the
warping index & is selected so that P(hs(X%)|a, ¥, Hn, A).
is maximized. Finally, the transformed observation vector
h4(X?®) is used in a second recognition pass to obtain the

1The inverse transformation has to be applied to the obser-
vations. For simplicity we use the same notation for transforma-
tions applied to either the observations or to the HMMs.
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[ Adaptation Method [ Digit Error |

Baseline 3.4 %
Baseline+Warp Trained 2.9 %
arp 25 %
1as 2.5 %
Warp+ Bias 2.2 %
N-best+Warp+Bias 21 %

Table 1: Results of speaker adaptation experiments.
final recognized string.

3.2. Adaptation Experiments

Single utterance based adaptation experiments were per-
formed on a connected digit speech corpus that was col-
lected over the public switched telephone network. The
training corpus consisted of 8802 single to seven digit ut-
terances (a total of 26717 digits), and the test corpus con-
tained 4304 utterances (13185 digits) from 242 male and
354 female speakers. For these experiments, the form of
the transformation is linear frequency warping followed by
a single linear bias applied to the warped observation se-

e B (X2 () = X*(2) =, @

where X“(t) is the cepstrum observation vector at time ¢
warped by ga(). To estimate the optimum = it was assumed
that only the highest scoring Gaussian in the mixture con-
tributes to the likelihood computation thus simplifying the

estimate
= (Z X(t) ~ e )/(Z a,-l(z)) (5)

- Ti(t)

where pi5(1),0j(¢) are the mean and variance of the most
active Gaussian 7 in the mixture at time instant ¢.

Speaker adaptation results are reported in Table 1 in
terms of the percentage of digits that were erroneously rec-
ognized. Context independent continuous Hidden Markov
digit models with mixtures of eight Gaussians per state
were used for recognition. The “Baseline” digit accuracy is
shown in the first row of Table 1. The second baseline exper-
iment, labeled “Baseline+Warp Trained”, refers to the im-
proved acoustic models obtained by applying the frequency
warping algorithm during training. The training procedure
was as follows. First, the optimum linear frequency warp-
ing factor & was estimated for each speaker in the training
set so that P(X*|a, A, H.) was maximized, where H_ is the
known transcription corresponding to X. Then, improved
state alignment was obtained using the warped observation
vectors X%. Finallyy, HMM models were trained from the
original (unwarped) utterances X using the segmentation
information obtained from the warped utterances. A 15%
reduction of word error rate in our test set was achieved by
using warping during training. The “Warp Trained” HMMs
are used for the adaptation experiments in the remainder
of this section.

Next, we compare the performance of the speaker adap-
tation algorithms outlined in the previous sections when a
single utterance is used to estimate the transformation pa-
rameters. The third row of the Table, “Warp”, refers to
the warping algorithm of Section 2. The amount of linear
frequency scaling ranges from 12% compression to 12% ex-
pansion and a total of 13 warping factors are allowed in
this range. The fourth row of the Table, “Bias”, displays
the recognition rate when a single linear bias is estimated
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[ Recogmtion Task | Baseline | Warping |

Traiming: Male Adult Spks
Testing: Female Adult Spks | 21.4% 5.9%
Training: Male Adult Spks
Testing: Children Spks 52.2% 19.3%

Table 2: Word error rate for the connected digit recognition
task using frequency warping normalization for mismatched
training and testing conditions.

for the whole utterance without the use of warping. The
optimal bias vector ¥ maximizes P(h,(X)|v, A, H), where
H is the corresponding transcription obtained from a pre-
liminary decoding pass.

The fifth row of Table 1, labeled “Warp+-Bias”, refers to
warping and bias estimation applied in cascade. Note that a
separate bias vector 4, was computed and subtracted from
each warped observation sequence X before the optimal
warping index & was selected. We have observed that joint
optimization of the bias vector and the warping index pro-
vides additional performance improvement over separately
optimizing the bias and the warping index. This is in agree-
ment with our claim in Section 3.1 that the combined opti-
mization of both model transformation and frequency warp-
ing is important for obtaining a better match between the
utterance and the model.

The last row in Table 1 labeled “N-best+Warp+Bias”,
shows the performance of the complete procedure described
in Fig. 2, i.e., warping and bias estimation applied to the
top four scoring transcriptions. It is interesting to note
that by including a larger ensemble of models as “starting
points” for adaptation, the word error rate was reduced by
approximately 30%. Most of the improvement is due to
the combination of the warping and bias adaptation algo-
rithms, while a minimal improvement is due to using N-best
alternate hypotheses for estimating the transformation pa-
rameters. Note that the reduction in error rate obtained
by combining the warping and spectral shaping algorithms
is approximately equal to the sum of the reduction in er-
ror rates when applying each of the adaptation procedures
separately.

4. SPEAKER NORMALIZATION
EXPERIMENTS WITH MISMATCHED DATA

The performance of the speaker adaptation algorithms was
investigated for cases where there exists significant acous-
tic mismatch between the speaker population used during
training HMMs and during recognition. Mismatch between
several populations of speakers was investigated including
children, adult male, and adult female speakers.

In Table 2, we display the word error rate for the con-
nected digit recognition task over the public switched tele-
phone network before and after frequency warping adap-
tation using a single utterance. In both experiments, the
HMMs used for recognition are trained from a population
of adult male speakers. The test set for the first row of
Table 2 consists of 2800 digit strings of length one to ten
(8645 digits) spoken by adult female speakers. In the sec-
ond experiment, the test set consists of utterances spoken
by children speakers ages six to seventeen (2500 digit strings
of length one to ten, total of 9466 digits). Note that for
children speakers, up to 30% expansion of the frequency
scale is allowed during frequency warping. Similar children
speaker adaptation experiments were reported in {6]. De-
spite the small amount of data used to estimate the optimal
warping factor (one to ten words) and the simplicity of the
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Figure 3: Average warping factors per age and gender.

transformation (linear warping) the speaker normalization
algorithm can provide word error rate reduction up to 70%
for mismatched training and testing speaker populations.

In Fig. 3, the average optimal warping factors & are
shown per speaker’s age and gender. Note that o =1 cor-
responds to no warping (data matched with the adult male
model), while @ = 0.8 corresponds to 20% compression of
the frequency scale. The elevated slope of the average warp-
ing factor curve for young male speakers corresponds to the
rapid vocal tract growth during puberty. One can further
infer from this plot that the average formant frequency val-
ues for adult male speakers is approximately 15% smaller
than those of adult female speakers.

5. ISSUES IN FREQUENCY WARPING

In this section, we attempt to better understand the poten-
tial performance gains that can by achieved by frequency
warping normalization. It was noted in Section 3.1 that
one can create a larger ensemble of observations by gen-
erating multiple “warpings” of a sequence of observations.
Further, by separately decoding each of the warped obser-
vation sequences one can generate a larger ensemble of can-
didate decodings to choose from. In the following, we inves-
tigate the richness of alternate string hypotheses generated
from the warping algorithm and evaluate the performance
of the maximum likelihood criterion for selecting the de-
coded string corresponding to the correct transcription.

In order to characterize the richness of the ensemble of
alternate string hypothesis generated by the warping algo-
rithm, we measure how often the correct string is included
in the set of candidate strings decoded from the warped ob-
servation sequences. This is similar to observing how often
the correct string is included in the top-N sentence hypoth-
esis list for an N-best decoder. In Table 3 we display the
percent utterances where the correct string is contained in
the list of N-top candidates when using the frequency warp-
ing speaker normalization algorithm (second column) or an
N-best decoder (third column). Note that in the case of
warping, N corresponds to the number of alternate warp-
ing indexes considered, not the total number of (unique)
decoded strings. The databases and HMMs used for this
experiment are identical to those used in Section 3.2.

It is interesting to note from Table 3 that by evaluating
over an ensemble of at least four possible warping values,
the string recognition rate could improve from 91% to 96%.
The fact that a smaller improvement is achieved when using
the procedure described in Section 2 is an indication that
the criterion used for selecting the warping factor is not
performing as well as we would like it to.
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[ Ensemble Size N | Warping | N-best |
1 91.0 % 91.0 %
2 94.2 % 95.8 %
3 95.6 % 97.0 %
4 96.0 % 97.8 %

Table 3: Percent of correct strings in N-top candidates.

The string recognition performance in the second col-
umn of Table 3 can be directly compared with the corre-
sponding performance obtained using the frequency warp-
ing procedure in Section 3.2. The string recognition rate
obtained using frequency warping was 93.3%. This corre-
sponds to the digit error rate of 2.5% given in the third row
of Table 1. This is significantly worse performance than
the potential 96% string recognition rate (in Table 3) if the
warping factor selection criterion were perfect. Further-
more, we observed that by using the correct transcription
H.: in Eq. 1 to estimate the optimum warping factor the
string correct rate increased from 93.3% to 94.3%. This is
still far from the potential 96% string correct. Thus, er-
rors in selecting the warping index are only partially due to
poor alignment between HMM states and the observation
sequence. Further investigation is necessary to improve the
selection criterion.

6. SUMMARY

In this paper, we have presented evidence that the improve-
ment in recognition performances achieved by frequency
warping and spectral shaping adaptation are independent.
By combining frequency warping and spectral shaping dur-
ing training and testing 40% reduction in word error rate
was achieved for our task. Further, the power of frequency
warping was demonstrated for both matched and, espe-
cially, for mismatched training and testing speaker popu-
lations.
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