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ABSTRACT

Application of set-membership (SM) identification to
real-time speech processing is made possible by the optimal
bounding ellipsoid algorithm with automatic bound estima-
tion (OBE-ABE) that blindly deduces model-input bounds.
To date, lack of any tenable approach to estimating bounds
in speech models has rendered these interesting new SM
methods impractical. OBE-ABE is consistently convergent,
offers significant computational advantages, and provides a
set of feasible solutions in finite time.

1. INTRODUCTION

Optimal bounding ellipsoid (OBE) identification algo-
rithms (e.g., [4, 5, 8]) have strong potential for applica-
tion to speech-processing problems involving linear predic-
tion (LP) and other parametric models. With respect to
the entrenched LP analysis methods (e.g., [6]), OBE identi-
fiers offer superior adaptation, improved accuracy, efficient
use of innovation in the data, improved computational effi-
ciency, robustness to measurement noise, robustness to de-
viation from the assumed input model, a set offeasible so-
lutions rather than a single point estimate, and the ability
to compute the solution recursively in time without block
processing or windows (e.g., [5]). In spite of the potential
benefits of OBE identification, however, a significant prac-
tical impediment concerning input modeling has precluded
widespread application of the methods to speech processing.
This paper introduces a new class of OBE algorithms that
include a major breakthrough for practical application, and
demonstrates the benefits of the new OBE-based technique
in speech modeling.

In the LP formulation, a stationary frame of speech {y.}
is modeled as

m

Yn = E @iYn—i + Une = Hipxn + Una (1)

=1

in which 67 = [ a [ ] is the unknown parame-
ter vector, and the conceptual input, {va«}, is stationary
white noise in the unvoiced case, and a unit sample train
of appropriate pitch for voiced speech (e.g., [6]). In fact,
for satisfactory performance of conventional LP identifiers,
it is only necessary that the input sequence have spectral
properties similar to the assumed models.

On the contrary, OBE methods make no assumption
about correlation properties of the input. Rather, OBE
algorithms are based on the premise that a sequence of en-
ergy bounds, {¥»}, is known a priori such that v2, < v,
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for each n. Specific time-domain information (often sim-
pler and easier to pose in signal-processing problems) takes
the place of restrictive correlation assumptions about the
driving sequence.

Unfortunately, failure to prescribe accurate bounds in
OBE processing is potentially catastrophic. Underesti-
mated bounds may cause divergence to a parameter vector
that is not even capable of generating the observed data
(outside the feasible set), while overestimated bounds may
cause the estimate to “freeze” at a biased estimate. In ei-
ther case, improper bounds imply statistical inconsistency.

The OBE algorithm with automatic bound estimation
(OBE-ABE) is the first SM method to solve the difficult
problem of blindly estimating speech-model input bounds®.
OBE-ABE removes the practical roadblock to LP modeling
of speech. The parameter estimator inherent in OBE-ABE
converges consistently under conditions on {vn.} expected
to be met in speech signals, and additionally provides the
customary OBE set of feasible solutions in finite time. This
work significantly advances speech results in [2, 3] where an
OBE method was applied with heuristic bound estimation.

2. BENEFITS OF OBE PROCESSING

Before proceeding with formal developments, we elaborate
upon the significance of OBE-ABE as an LP identifier for
speech, and upon the scope of this paper in that regard.
Fundamentally, OBE-ABE is a recursive-in-time identi-
fier, offering the algorithmic convenience of temporal recur-
sion, avoiding the inelegant and hard-to-analyze process of
batch processing of overlapping frames. Neglecting window
effects, the RLS algorithm (e.g., [11]) has always been avail-
able to speech processors as a (framewise) theoretical equiv-
alent to batch-LP solutions, but one with inadequate finite-
time convergence, poor adaptation, and @(m?) computa-
tional complexity compared with O(m) for batch-LP meth-
ods (e.g., [6]). OBE-ABE, on the other hand, is an RLS-like
set of recursions which, in its suboptimal variant [9], is of
O(m) complexity, and which converges to an excellent so-
lution in time intervals typical of speech frames. (This con-
vergence behavior is also superior to conventional OBE al-
gorithms with ad hoc methods for bound estimation {2, 3].)
With an enhancement similar to the selective-forgetting ap-
proach used with conventional OBE algorithms [5]), OBE-
ABE can be made to quickly adapt to changing dynamics
in the speech [9]. With temporal recursion, the adaptation

1The “ABE” enhancement can be incorporated into any OBE
algorithm [4]. Here we employ the OBE version known as set-
membership—stochastic approrimation (SM-SA).

1279



occurs continuously rather than in a “forced” and “quan-
tized” manner due to block processing.

Further, OBE-ABE (and all OBE algorithms) incorpo-
rates only data that are sufficiently innovative in a well-
defined sense. Typically, only 10% of the data are actually
used in the estimate. This fact, combined with the tracking
capabilities noted above, offer interesting possibilities for
efficient speech coding and compression. For the same rea-
son, empirical quality of the OBE-ABE-based LP solution
is often superior to that obtained from batch processing.

OBE-ABE solutions are more robust to measurement
noise and other practical deviations from the presumed pro-
duction model. The measurement noise issue is discussed
in [9]. To the extent that the linear model (1) is accu-
rate, the “true” {vn«} is more likely to be a noisy, “phase-
scattered” version of such a pulse train in the voiced case to
account for model errors and nonminimum-phase effects [6].
In either the voiced or unvoiced case, the speech signal
might also be better-modeled by driving the system with
an alternative input sequence such as a multi-pulse excita-
tion [1]. One of the benefits of the OBE methods is that
unbiased identification is not rigidly dependent upon the
spectral properties (whiteness) of {vn+}. In fact, OBE, and
in particular OBE-ABE, algorithms operate according to a
very different principle which requires sufficient visitation
of the input to its amplitude extrema to effect convergence.
Even a correlated input model is acceptable with certain re-
strictions. The convergence properties of OBE-ABE are rig-
orously understood with respect to conditions on {vn«} [9].
The adherence of {vn.} to the prescribed model form is
of significantly less importance to good estimation perfor-
mance than with batch LP methods.

These benefits will be more fully developed and discussed
in future publications. The purpose of this paper is to in-
troduce the OBE-ABE algorithm and to demonstrate its
elementary application to speech modeling.

3. OBE-ABE ALGORITHM

With knowledge of energy bounds v2, < 4, it can be
demonstrated that 8. € 9, where 2, C R™ is a hy-
perellipsoidal set based on the observations at time =,
Q. {€| (0-6,)TP; (8 -0.)< nn} where the ellipsoid
center, 6, and the defining matrix P, are computed recur-
sively using recursions (2)—(6) in Table 1. These recursions
comprise a general OBE algorithm. The ellipsoid center 6,
is used as an estimator of the parameters 8, at each n. For
details see, for example, [4, 5, 8].

In LP identification of speech via OBE estimation, the
choice of a proper bounding sequence {vys} is both criti-
cal and difficult. Since precise bounds are unknown, and
since underbounding is riskier, practitioners are conserva-
tive in applying bounds, “erring” on the side of overbound-
ing. A conservative sequence of bounds {v,} will assure
a meaningful feasibility set of parameters 2, at each n
in the sense that 8. € Q,. However, achieving an ulti-
mately small set Q,, depends explicitly on a set of very tight
bounds [10]. This means that the estimator may be impre-
cise, even asymptotically, if the bounds are too “loose.”
Formally, it has been shown that if a persistency of excita-
tion (PE) [11] condition holds, then the estimator of any
OBE algorithim converges to a finite neighborhood of the
true parameter vector 8. [10). However, consistency of the
estimator (reduction of Q, to a point) results can be proved
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only when exact bounds (i.e., overbounds not exceeding the
true bounds by more than an arbitrarily small € > 0) are
employed for infinitely many samples. Thus, an OBE esti-
mator is not guaranteed to be consistent when conservative
bounds are used. OBE-ABE relaxes the requirement for
precise a priori bounds.

OBE-ABE augments the conventional OBE iterations
with a recursion for the estimation of the bound v,. The
ABE step prevents potentially catastrophic bound violation
by converging to the true (but unknown) bound from above,
and results in faster convergence speed, as well as improved
robustness to measurement noise [9]. The ABE recursion is
shown in Table 1 which summarizes OBE-ABE (quantities
€, N, M, and index J are described presently).

The novelty in OBE-ABE is based on recent work on
the convergence behavior of general OBE algorithms [10].
OBE-ABE itself is guaranteed to converge consistently (ei-
ther with probability one, or in the weaker probability
sense) given a PE condition and one of several distribu-
tion conditions on {vn.} assuring sufficient amplitude vis-
itation to the input bounds [9]. Therefore, in OBE-ABE,
the usual OBE requirement of exact knowledge of the bound
sequence {yn}, and the conventional model assumption of
input “whiteness,” are replaced by the much less demanding
requirement of characterizing the “tail probabilities” of the
random variables v,. through the small numbers ¢ and é.
Roughly speaking, & is the probability with which {vn.} vis-
its e-neighborhoods of the bounds. Practically, € is simply
taken as a small number as described below. The proofs
of these convergence results are based on the notion that
OBE will cease to update asymptotically if the bounds are
overestimated. Therefore, if at some time n, the bounds are
overestimated, there is guaranteed to be a future interval 7
of length N over which no updating takes place. Such an
interval indicates the need to lower the bound which is done
using the data at time J = argmaxnez 5?,. f M denotes
the number of data points available on the frame, then for
a given interval size N, the number of bound updates on
the frame is less than M/N. As M — oo and ¢ — 0, the
set of feasible solutions for the model will approach a single
point with probability greater than [1 —-(1- 6)N] M [9).
In practice, since M is finite, ¢ is first chosen to be a small
positive number. Given this ¢, a § is obtained. We then
choose a sufficiently large M and N(= VM, for example)

such that the probability {1 — (1 — 6)N]% is close to unity.
These choices are illustrated in the experiments in Section 4.

4. LP ANALYSIS USING OBE-ABE

In this section we briefly demonstrate the application of
OBE-ABE to stationary frames of speech.

Speech is a very dynamic signal. Even a short frame (e.g.,
256 points) of speech can be regarded as quasi-stationary
at best. Hence, any recursive algorithm must converge sat-
isfactorily within short time frames. With the OBE-ABE
algorithm, we obtain below comparable results to those ob-
tained using conventional batch LP methods (autocorrela-
tion method [6]) with all the advantages of OBE processing,
but without the difficulties encountered in ad hoc attempts
to apply OBE [2, 3].

A critical point is that, in the reported and similar exper-
iments, optimal OBE-ABE selects only 12% of the data for
updating the estimator on average in voiced cases and 8%
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1. Initialization: 1. Set 8o = 0, kg = g, and Po = 41, where p is a small number, typically 1072, 2. Set 4o = any
overestimated bound. 3. Choose € (small positive number), N and M. (See discussion in example applications.)

IT. Recursion: Forn=1:M
H ¢n < 0, execute recursions (2)-(6). (Note: c¢pn,an, and B, are described in III below.)

Gn = ann—lxn (2)
&n = Yn—0h_1Xn ®3)
_ 1 ﬂnPn—lxnxzpﬂ—l
Pn = an[Pn—l - n +ﬂnGn ] (4)
8y = 6Bn_a+ ﬂnannen (5)
anfBnes
Kn = Qnkn—1+ PnYn— ;:T’B"—G:- (6)

Otherwise, if a time interval Z of length N over which ¢, > 0 is found, set

In = {1n-1 —dsifd; > 0; vn_1 otherwise}, (1)
where d; = k7_1Gs/m — €(2y/Fn-1 — €) and J = arg max, 7 €a. (8)

ITI. Optimization details: {an} and {B.} are positive weighting sequences determined by the particular OBE
algorithm employed. In almost every OBE algorithm, the weights are chosen to minimize the “size” of 1, at each
n. When such optimal weights do not exist, the updating need not take place. In the SM-SA algorithm (used in
this paper), the volume of the ellipsoid (proportional to det x,Py) is minimized at each iteration by letting fn = An,
on =1 — Ay, and seeking the optimal A, in light of the current measurements. If ¢, < 0 [see (9) below], the optimal
weight is given by the unique positive root of the quadratic equation in A with coefficients (in descending power order)

@n = myn —med +mGiyn — 2mGnyn — kn1Gn + kno1G2 4+ Gnyn — G2y, — €2Gn
by = 2mel —2myn +2mGryn + 26n—1Gn — Kn_1G2 — Gnyn + €2Gn 9)
Chn = MYn— me?, — kn—1Ghn.

If ¢, > 0, the optimal weight is zero.

Table 1. The OBE algorithm with automatic bound estimation (OBE-ABE).
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Figure 1. Spectra of voiced /1/ phoneme from an utterance of
“six" in the TIMIT database. A 256-point frame (rectangular
window) is used in each case. Upper graph: FFT spectrum.
Lower graph: OBE-ABE spectrum (dashed curve), and LP
autocorrelation method spectrum (solid curve).

for unvoiced. For suboptimal OBE-ABE, these results are
7% and 12%, rtespectively, so that the process is of O(m)
complexity (see [9]). Earlier attempts to apply conventional
OBE algorithms resulted in approximately 30% data selec-
tion in both cases [2, 3]. Further, in applying the OBE-ABE
algorithm, the speech frames (voiced or unvoiced) are un-
windowed and have a consistent length of 256 points. The
LP model size (m = 14) also remains the same for both
voiced and unvoiced cases. In the earlier work with con-
ventional OBE, it was found necessary to increase the win-
dow size and decrease the model order for unvoiced speech
(c.f- [3]). This makes the application of OBE-ABE straight-
forward, without requiring a priori knowledge of the voiced
/ unvoiced status of the frame.

As typical examples of stationary-frame analysis, we show
results for the vowel /i/ (voiced phoneme, from utterance
“six”) in Fig. 1 and for the unvoiced plosive [t/ (from
“eight”) in Fig. 2. The speech data are taken from the
TIMIT database [7]. The upper portions of the figures
show the spectra of the speech frames themselves based
on an FFT. The lower portions show the smoothed spec-
tra based on LP parameters obtained from the autocorre-
lation method [6] (solid line), and the OBE-ABE algorithm
(dashed line). The OBE-ABE algorithm produces similar
spectra to those of conventional batch method while us-
ing only a small fraction (~ 10%) of the data. Further,
the analysis produces a feasible set of solutions (with 100%
statistical confidence) that might be useful in certain ap-
plications. Results of processing the same two data frames
with suboptimal OBE-ABE are similar.

In Sections 1 and 2, we have enumerated a number of ben-
efits of OBE-ABE processing of speech, but the space avail-
able for these simple experiments with stationary speech
does not permit extensive illustration of these advantages.
These issues will be the subject of future publications. No-
tably, a modification of OBE-ABE to provide adaptive es-
timates to track speech parameters is described in [9].
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Figure 2. Results similar to those in Fig. 1 for the unvoiced
/t/ phoneme.
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