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ABSTRACT

Loudness patterns are closer to the human perception of
sound waves than spectrograms. This paper describes
how loudness patterns can be efficiently calculated with an
allpass-transformed polyphase-filterbank based on a mixed
radix FFT and three subsequent non-linear stages that
model masking effects in the frequency and time domain
as well as loudness compression.

1. INTRODUCTION

We can learn by psychoacoustic experiments that our ear
and the subsequent sound processor, the human brain, do
not view a sound event as a simple superposition of sinu-
soids. For example, a sine may be heard or not depending
on the additional sounds that surround it in the frequency
or time domain. These effects are known as frequency or
time masking. Other experiments show that spectral com-
ponents are packed together while being analyzed, this leads
to the concept of critical bands. The bandwidth of a critical
band increases with frequency. Furthermore, we know that
our auditory system performs a loudness compression: For
sines at medium to high levels we find a law stating that a
sine with a tenfold intensity is only heard twice as loud.

2. OUTER TO INNER EAR FILTER

Before sound waves are analyzed by the nerve cells in the
cochlea, they have to pass the outer and middle ear. We
can model this transfer with a linear time-invariant filter.
The filter was designed to approximate an analytical ex-
pression for the outer to inner ear attenuation function ao
found in [4). A fourth-order IIR filter can give a very good
approximation.

3. CRITICAL-BAND FILTERBANK

3.1. Polyphase Filterbank

We start with a linear-phase prototype lowpass impulse re-
sponse ho(k) of finite even length M:

k=0..M-1
elsewhere

ho(k) = { ho(M —1— k())
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Figure 1: QOuter to inner ear transfer function. Solid: 4th

order IIR-filter, dashed: analytical expression very close to

measured data

We can now modulate this lowpass function with two com-
plex harmonic exponentials, i.e. a cosine function:

hepu(k) = 2 ho(k)

o3 v3) (- 25

For p = 0...M/2 — 1 we can derive M/2 different real
bandpass functions hpp,,. (k) thus constructing a filterbank
with M/2 channels. The filterbank output signals y, (k)
can then be calculated as:

wk) = R { 2 exp [jwMAf (u+3)]
M-~1

Z [ho(m) exp (—j %m) vk—-M+1+ m)]

m=0

s (-3 3om) |

Basically, this is just the Discrete Fourier Transformation
(DFT) of the windowed last M samples of the input signal
v(k). These samples are weighted by a modulated version

hmoa(k) = ho(k) exp (—j %k)

of the prototype-filter impulse response ho(k). The DFT
output has to be multiplied with the factors

2 ex ['W—M_l ( +l)]
and the real part must be extracted. This filterbank is

closely related to a Discrete Cosine Transformation (DCT,
see for example [7] ).
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If we are only interested in every Kth of the M/2 fil-
terbank channels (i.e. L/2 in total), we can write with
p=K-v,v=0...L/2-1and K-L=M:

ykv(k) = R{ 2 exp[j'rrMA;1 (Ku+%)]

-1
Z w(k,l) exp (—j 2T"rlll) }

=0

with
K-1
w(k,) = ) hmod(l + L) v(k — M +1+1+ kL)

r=0

and [ =0... L — 1. In this case a DFT of size L is suffi-
cient. If ho(k) is properly designed (for example with Parks’
and McClellan’s algorithm [5]), we can smoothly cover the
whole frequency range from @ = 0 to Q = 27 with this
so called polyphase filterbank consisting of L/2 FIR-filters.
w(k,!) describes the output of the polyphase network. The
network output is fed into a DFT that can be efficiently
computed with FFT algorithms. The size of the FFT is
only L although the length of the filter impulse responses
is M = KL. A downsampling of the filterbank output is
allowed, and because of the non-recursive structure of the
filterbank we only have to calculate output samples at the
lower sampling rate thus reducing the computational load
according to the downsampling factor (8].

3.2. Allpass Transformation

Qur ear does not analyze sound events in evenly spaced
frequency bands. Laws that relate the auditory filter band-
width (critical bandwidth or ERB) to frequency were an-
alytically formulated by Zwicker {1} and Moore and Glas-
berg [2]. Zwicker finds 18 and Moore and Glasberg find 27
just not overlapping filters in the frequency range from 0 to
4000 Hz. In both cases we find a non-linear but monotonic
warping of the frequency axis to a Bark or ERB scale. If
we submit our filter functions to an allpass transformation,
we should be able to model this frequency scale warping.
‘We content ourselves with a real first order allpass defined
by its transfer function

—a+ 27!
Hale) = 1571

If we choose for example a = 0.4 (Zwicker) or a = 0.55
(Moore and Glasberg) we can sufficiently approximate the
frequency warping characteristic of the human auditory sys-
tem (see Figure 2). The cascade of M — 1 delays that was
needed for the storage of the last M — 1 input samples is
now replaced by a cascade of M —1 allpass filters. Thus the
original FIR-filterbank is transformed to an IIR-filterbank.
The phase characteristic is no longer linear and the group
delay of the filters is now a function of frequency:

M-1 1-a’
2 1—-2acos()+a?

Ter(Q) =

We get a different (mean) time delay in each channel which
must be balanced for the correct calculation of frequency
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Figure 2: Frequency warping of the auditory system (solid:
exact formula, dashed: allpass approximation)
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Figure 3: Warped polyphase filterbank with 18 channels

masking. The downsampling can no longer be performed
in that easy way described above. Since the recursive struc-
ture of the transformed filterbank is limited to the cascade
of allpass filters, we only need to calculate the cascade at
the original sampling rate, and the subsequent stages like
the FFT can be calculated at the lower sampling rate.

3.3. Mixed-Radix FFT

Most commonly used FFTs are only capable of transform-
ing input vectors when the length is a power of two (Radix-
2-FFT). To cover the whole narrowband frequency axis up
to 4 kHz we need 18 filters in the Zwicker case and 27 fil-
ters if we follow Moore and Glasberg. This would require
a DFT of length 36 or 54 respectively. For that reason
we cannot build up a psychoacoustically correct filterbank
with a common Radix-2-FFT. A prime factor decomposi-
tion yields 36 = 2-2-3-3 and 54 =2-3-3-3. In both
cases we only have the prime factors 2 and 3. An FFT
based on these two radices increases thus the computation
speed. The gain in computation speed is even higher if
we try to calculate the critical band powers of more than
18 or 27 points along the basilar membrane. For example
a quadrupling of these numbers would result in 72 or 108
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filters which now are overlapping. We would have to cal-
culate DFTs of length 144 or 216 which could also be per-
formed with a combined Radix-2-Radix-3-FFT.

3.4. Power Estimation

The critical-band powers P, (k) have to be estimated. This
task can be accomplished by squaring and subsequent low-
pass filtering of the filterbank output signals yx.(k). A
simple recursive first-order lowpass possessing the transfer

function 1 - BW)
- B(v
Her ) = T )T
is suitable for the filtering of y%, (k) and not wasting to
much computation time. The integration time is controlled
by the parameter 8(r) which should be a function of fre-
quency and thus channel number v = 0...L/2 — 1 to get
an appropriate time-frequency resolution.

4. EXCITATION

The excitation E, (k) of the auditory nerves is calculated
by a frequency smearing of the critical band powers P, (k).
Masking curves mirror the excitation produced by a mask-
ing sound. The slopes of the masking curves of narrow-
band noise have been analytically described by Terhardt
[3]; these curves show how power is spread in the inner ear.
The ascending slope is constant on the Bark scale: S; =
27 dB/Bark. The descending slope depends both on sound
pressure level SPL and frequency f:

f )-1_ 025PL] dB

Sz = [24”'23(@ 2738 | Bak

Each critical band power P, (k) is treated separately and
smeared with these slopes, so we get a total of L/2 interim
excitation vectors of length L/2. The combined excitation
at one specific point (described by the index v) on the basi-
lar membrane is here defined as the maximum of all interim
excitations that stimulate that point. Thereby no compu-
tationally expensive add-up rules have to be obeyed. Since
the slopes are linear on a logarithmic scale we can stepwise
calculate the smeared power (interim excitation) evoked by
one channel with a repeated multiplication by a constant
factor. This factor remains constant and channel indepen-
dent for the smearing toward lower channels and depends on
frequency (channel number) and channel power for upward
direction.

5. SPECIFIC LOUDNESS

The law derived by Zwicker for the transformation of exci-
tation to specific loudness is in principle a power law with
exponent 0.23:

0.23 0.23
N,(k) = 0.08 (E—ng—"l) [(% * %éq(?z)) B 1]

N, (k) denotes the specific loudness, E, (k) the excitation,
and FEj is the excitation corresponding to the intensity nor-
malization value Ip = 1072W/m?. Erq(v) describes the
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Figure 4: Calculated excitation patterns for two sines at
z=2 Bark and z=14 Bark and sound pressure levels = 40,
60, 80 and 100 dB

excitation at the threshold of hearing. The influence of
Erq(v) disappears when only medium or higher levels are
considered. In this case the following simplification holds:

N, (k) ~ Ey (k) *%

Since the exponent 0.23 is very close to 0.25, it may be
even allowed to substitute Zwicker’s relatively complicated
compression law by simply twice calculating a square root.

6. TEMPORAL MASKING EFFECTS

Since premasking plays only a secondary role, we can re-
strict ourselves to the modeling of postmasking. Suppose
a temporal masker of duration T, ends at time £. Using
continuous time notation, we can directly calculate a tem-
porarily smeared specific loudness:

N,(t+7) = D(1,Tm) - N, (t)

Kapust {4] has formulated an expression for D(r,Tr,) that
fits well to experimental data given by Zwicker:

1 T
D(r,Typ)=1—- — t —ms _
(7,Tm) 135 arctan [13.2 (1%5)0_25]

An algorithm based on this formula (the arctangent may
be substituted by a simpler third order polynomial) should
estimate the masker duration T, and find out if a tem-
porarily smeared specific loudness component of prior time
steps exceeds the specific loudness in the current time step.
If the smeared component is larger, it replaces the physical
specific loudness calculated for the current time step.

The method here proposed to determine the masker du-
ration is to calculate the ratio between the mean of the
specific loudness and its maximum in an interval of 200 ms
(after approximately 200 ms the influence of postmasking
vanishes [{1]). This ratio multiplied by the interval length
(200 ms) can be regarded as an effective masker duration.

Figure 5 shows the resulting specific loudness function
when a test signal is fed into the implemented postmasking
model. We can see how the decrease of the smeared specific
loudness is dependent on the signal history.
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Figure 5: Modeling postmasking

7. APPLICATIONS

Figure 6 shows the loudness pattern of a speech sample
which has been computed with an algorithm combining all
the stages described in the previous sections (M=64*18,
L=16*18, a = 0.4). This algorithm may enhance appli-
cations that rely on the computation of loudness patterns
and can substitute conventional FFT-based methods. For
instance speech recognizers and hearing aids could benefit
from an efficient algorithm to calculate loudness patterns.
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Figure 6: Loudnes pattern of the word “electroacoustics”.
Dark (light) areas indicate high (small) specific loudness.

The field of instrumental speech-quality assessment can
also be cited as an example. Instrumental (objective) meth-
ods try to replace the expensive subjective codec tests by an
instrument (usually a computer program) that is fed with
the processed and the original speech material then calcu-
lating an objective score indicating the quality of the codec.
An objective measure based on the comparison of loudness
patterns was implemented, and the loudness patterns were
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calculated with the algorithm presented above. The mea-
sure was applied to a test that was conducted to character-
ize the subjective performance of the ITU-T 8 kbit/s codec
(G.729). In Figure 7 the instrumental results are plotted
versus the subjective scores (MOS). The correlation is very

high.

Instrumental Speech—Quality Assessment
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Figure 7: Application of an instrumental speech-quality
measure to a test of the ITU-T 8 kbit/s-codec

8. IMPLEMENTATION

The algorithm was implemented in MATLAB. All time con-
suming parts have been coded as C-subroutines.
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