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ABSTRACT

In this paper, the intraframe correlation properties of
Line Spectrum Pair (LSP) are used to develop an
efficient encoding algorithm using the Karhunen-Loeve
(KL) transformation. An important nonuniform
statistical characteristics of LSP frequencies are
investigated. Based upon this nonuniform property the
neural network based techniques for generating the
transform vectors via system training are studied. Using
Principal Component Analysis (PCA) network to
decorrelate LSP coefficients, we show that these new
approaches lead to as good or better distortion as
compared to other methods for speech analysis-
synthesis.

Keywords: Speech coding; Low bit rate; Line
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1. INTRODUCTION

While various methods for speech analysis-synthesis are
known [1], the Line Spectrum Pair (LSP) method, first
introduced and studied by Itakura [2], is promising and
popular  methodology of LPC  parameters'
representation. The strong intraframe correlation has
been considered in several coding schemes, for
example, differential coding, 2-D DCT and time domain
DPCM {[3], etc. In our system, we attempt to utilize the
correlation between the LSPs in an effort to reduce the
average number of bits/parameter for a given level of
quantization distortion.

A comparative study was conducted to investigate the
efficiency of the neural net based KL coefficients in
comparison with the conventional PARCOR and LSP
parameters for both scalar and vector quantization.
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The emphasis of this work is on the efficient and fast
optimal transformation of line spectral frequencies
(LSFs) using PCA neural net [4].

Another important purpose of this paper to develop a
new loss encoder-scheme for encoding the LSFs which
reduce the high-frequency distortion.

2. LINE SPECTRAL FREQUENCIES

The Line Spectrum Frequencies (LSFs or Line
Spectrum Pairs LSPs) transformation of the LPC
prediction coefficients was first introduced by Itakura in
1975 [2]. The starting point for deriving the LSFs is the
response of the P order prediction error filter

A (z)= l—iakz’k M
k=1

The {a,} are the direct form predictor coefficients. In

speech coding, the LPC coefficients are known to be
inappropriate for quantization because of their relatively
large dynamic range and possible filter instability
problems. Different set of parameters representing the
same spectral information, such as reflection
coefficients and log area ratios, etc., were thus proposed
for quantization in order to alleviate the above
mentioned problems.

LSF parameters have both well-behaved dynamic
range and filter stability preservation property, and can
be used to encode LPC spectral information even more
efficiently than many other parameters.

From Egs. (1), A,(z) may be decomposed to a set of
two transfer functions, one having an even symmetry,
and the other having an odd symmetry. This can be
accomplished by taking a difference and sum between
A, (z) and its conjugate function as follows
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Difference filter:
P.(2)=A,(2)-z*"A,(z™")
Sum filter:
Q.@=A,@+z*"A, (™"

The LPC analysis filter, reconstructed by the use of
these two filters, is

A =3 {Pus (@) + Quu(2)]

Three important properties of P, (z) and of Q,,,(z) are
listed as follows:

- All zeros of P, (z) and Q,,,(z) are on the unit circle

- Zeros of P (z) and Q,,(z) are interlaced with each
other

- Minimum phase property of A, (z) is preserved after
quantization of the zeros of P, (z) and Q,,,(z).

Since all roots of P, (z) and Q,, (z) are on the unit

circle, they can be expressed as e and 's are then
called the LSP frequencies (LSF). The first two
properties are useful for finding the roots of P, (z) and

Q,.,(z). The third property ensures the stability of the
synthesis filter.

3. THE KARHUNEN-LOEVE TRANSFORM

The discrete time Karhunen-Loeve transform is defined
below:

Let _lix = E{XXT}, denote the autocorrelation matrix of
the LSF coefficients (column) vector X. Let u, denote
the eigenvectors of R {normalized to unit norm) and A,

the corresponding eigenvalues. The Karhunen-Loeve
transform matrix is then defined as

where U=[u u,...u,], that is, the columns of U are the
eigenvectors of R_.

=X
The transform coefficients can be expressed in the form
Y =TX, as the elements of column vector Y. Then the

autocorrelation matrix of Y is given by

R =E{YY"}=E{UXX"U}= U'R U=diagfAd,.2,]
where diag]...] is diagonal matrix with an element in the
main diagonal.

The LSF coefficients are given back by inverse
transform:

X=TY=U

- =
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4. STATISTICAL PROPERTIES OF LSF

We study the statistical property of LSF by using a
different speech data base of male and female speech
data, each frame is 20 ms long and 10th order LPC
analysis is employed. The distribution plots of LSFs are
shown in Fig. 1
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Figure 1: Histogram of LSFs
(Horizontal axis is in Hz)

A very important LSF property is the natural ordering
of its parameters, this property indicates that the LSFs
within frame are correlated. Thus after decorrelating a
set of LSFs by Karhunen-Loeve transform, we will get a
set of coefficients that has the following properties:

- Every coefficients are uncorrelated, thus we can
quantize them independently

- Some of them have a dominant value, other remaining
values are much smaller. Therefore the small value
coefficients may not necessarily be quantized and
transmitted (loss encoder-scheme).

- The dynamic range of Karhunen-Loeve (KL)
coefficients is less than the dynamic range of LSFs,
namely, these parameters can be more efficiently
quantized.

- However the quantizers can operate on the
transformed coefficients separately, but it is possible
that the ordering property is violated by this procedure.
There is a technique that reorders the quantized LSFs to
satisfy the ordering property without increasing the
distortion [3].

5. PRINCIPAL COMPONENT ANALYSIS WITH
NEURAL NETWORK

In our scheme, we perform a one-dimensional KL
transformation on the LSFs associated with each frame
using PCA net. A PCA neural network is a one-layer
feedforward neural network able to determine the
principal components of the input vector stream.
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Typically normalized Hebbian type learning rules are
used.

The simple learning rule for m parallel neurons is
introduced by Oja [4]):

— T_ T
Zkﬂ - gk +o {Zk X (Zk'zk )!k:l

where W W is the mxn dimensional weight matrix

€3]

of the net at learning step k and k+1, respectively. (0, is
the learning rate, X, is the n-dimensional input

sequence of vectors and y, is the m-dimensional

response of the net.

Learning rule (2) produces a normalized weight
matrix, which determines the subspace of the principal
vectors of the input stream in the n-dimensional space.

To complete learning rule (2) with the Gram-Schmidt
orthogonality procedure, the weight matrix will be
orthogonal (Sanger) [5]:

- T T
M X O -[Xk Xy LT(Xk Yy )lk :|

where LT( ) is the lower triangle matrix function which
operates the Gram-Schmidt procedure.

The PCA neural-net is illustrated in Fig. 2 by the
identical connections that exist between each input node
and each output node. The training sequence of 240.000
samples (24.000 sets of 10-dimensional vector) is used
for designing of PCA network.

. input

Figure 2: PCA Neural Network

6. OPTIMAL TRANSFORM CODING
OF LSFs WITH PCA NET

It is known [6], that the high frequency components of
the speech spectral envelope can be quantized even
more coarsely, because spectrally less sensitive line
spectral influence the all-pole spectrum near the
perceptually less critical spectral valleys. In addition,
LSFs lend themselves to frame to frame interpolation
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with smooth spectral changes because of their frequency
domain interpretation.

For this reason there is a speech waveform method, in
which the high-frequency coefficients are not
transmitted and will be regenerated at the receiver from
the lower frequency components. In this case the high-
frequency parameters are totally lost, thus the high-
frequency distortion is significant.

In this paper we propose a new method derived from
KL optimal transform approximating with PCA net to
spread the high-frequency distortion in frequency
domain. Seven resultant dominant KL coefficients of
PCA net are encoded and transmitted. At the receiver all
LSFs are regenerated using inverse KL transform,
therefore the overall distortion is lower.

7. EXPERIMENTS AND RESULTS

The performance test was based on a sequence of
speech samples taken from 18 speakers (11 male and 7
female). Six short sentences were recorded for each
speaker off a microphone. The speech signals were then
digitized at an 8 kHz sampling rate. At 10-th order LPC
analysis, based upon the autocorrelation method, was
performed on the data using a 32 ms Hamming window.

About 10.000 frames of LPC vectors (both train and
test data) were used in the experiments. The LPC
Cepstrum Distance Measure (CD) and Log Likelihood
Ratio (LR) are used for objective comparison of these
encoding schemes. The average CD and LR are defined
as follows

CD = %g[cx(o) —cy(o)]2 + 2§[cx(k) -~ c,(k)]zr

and

D)

. 2
N A o
m=lzl.{iI () ]
Nn:l 1t0
where c,(k),c,(k) k=0,1,2,.. denote the speech

cepstral coefficients and A, (z), A (z) denote the

analysis filters given by LPC coefficients of the nth
speech frame of original and distorted speech,
respectively. N is the total number of frames.

The training sequence of 240.000 samples (24.000 sets
of 10-dimensional vector) was used for designing the
PCA network and related scalar or vector quantizers.
The generalized Lloyd algorithm (K-means clustering
alg.) with binary split technique is used to design vector
quantizer in our comparative studying [7].
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Scalar quantization of PARCOR, LSF and KL
coefficients (3.6 bits/parameter with
{5,4,4,4,43,3,3,3,3} bit allocation) and vector
quantization of 7 significant LSFs or 7 dominant KLs
(22 bits/vector with codebook size of 4096 for first 4
coefficients and 1024 for the remaining 3 coefficients)
of loss encoder scheme are studied. The performance
results are presented in Table 1.

8. CONCLUSION AND FURTHER STUDIES

This paper presents the use of Karhunen-Loeve
transform for the LSF coefficients with Principal
Component Analysis Neural Network in low bit-rate
speech coding. The basic idea in developing these
schemes is using the correlation of LSFs to reduce the
bit rate for a given level of fidelity.

All the result indicates that LSFs are strong correlates
and we can reduce it efficiently by KL transformation
using PCA neural net.

The three 36 bit scalar quantization schemes (M1),
(M2) and (M3) produce approximately the same
distortion. It can be seen that with a 40% reduction in
bit rate requirements (from 36 bits/frame to 22
bits/frame) the method (M5) works almost the same as
methods based on scalar quantizers and better than the
method with no transformation (M4).

Further study in developing PCA network is possible
with more complete learning rule. Replacing 1-D with
2-D Karhunen-Loeve transformation are among the
interesting ideas for further research on this subject.
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Method (Analysis flow) CD LR

(M1) PARCOR -, Scalar Q. 36 bits 2.43 (10.56 dB) 0.87 (3.80dB)
(M2) LSF - Scalar Q. 36 bits 2.44 (10.61 dB) 0.88 (3.82dB)
(M3) LSF -, PCA -, Scalar Q. 36 bits 2.44 (10.58 dB) 0.88 (3.81dB)
(M4) LSF 7 Coeff. - Vector Q. 22 bits 2.61 (11.34dB) 0.99 (4.30dB)
(M5) LSF -, PCA 7 Coeff. - Vector Q. 22 bits 2.46 (10.67 dB) 0.93 (4.05dB)

Table 1: Average Cepstrum Distance Measure (CD) and Log Likelihood Ratio (LR)
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