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ABSTRACT

In this paper, we report our recent work on applications of

the MAP approach to estimating the time-varying polyno-
mial Gaussian mean functions in the nonstationary-state or
trended HMM. Assuming uncorrelatedness among the poly-
nomial coefficients in the trended HMM, we have obtained
analytical results for the MAP estimates of the time-varying
mean and precision parameters. We have implemented a
speech recognizer based on these results in speaker adapta-
tion experiments using TI46 corpora. Experimental results
show that the trended HMM always outperforms the stan-
dard, stationary-state HMM and that adaptation of poly-
nomial coefficients only is better than adapting both poly-
nomial coefficients and precision matrices when fewer than
four adaptation tokens are used.

1. INTRODUCTION

Bayesian learning has been widely used for obtaining max-
imum a posteriori (MAP) estimates of the hidden Markov
model (HMM) parameters (e.g. [6, 4]). The MAP estima-
tion framework provides a way of incorporating prier in-
formation in the training process. This is particularly use-
ful for dealing with problems arising from sparse training
data, out of which the classical maximum likelihood (ML)
approach gives poor estimates of model parameters. This
MAP approach has been shown to be effective for speaker
adaptation of alpha-digit recognition and a number of other
tasks where the time-invariant (given HMM states) Gaus-
sian densities are adapted to sparse training data obtained
from new speakers [5].

The formulation of the trended HMM, also called the
parametric nonstationary-state HMM or parametric tra-
jectory model, has been proposed as a superior model for
speech acoustics than the conventional HMM, and has been
successfully used in speech recognition applications [1, 2, 7].
The parameters of the trended HMM, especially the state-
dependent time-varying Gaussian means, used in the past
were trained by a modified Viterbi algorithm based on the
joint-state ML principle {2]. In our previous study, we ex-
tended the ML training algorithm to the minimum classifi-
cation error (MCE) training algorithm for discriminatively
estimating the state-dependent polynomial coefficients in
the trended HMM [7]. Just as an extension of the ML
trained unimodal Gaussian trended HMM to the MCE-
trained trended HMM is a step towards superior discrimina-
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tion of speech classes, we expect that the same superiority
can be achieved in our trended-HMM framework (due to
its superior modeling capabilities) by extending the ML-
trained HMM to MAP-trained trended HMM for speaker
adaptation applications.

In this study, we investigate the problem of the MAP ap-
proach to estimating the time-varying polynomial Gaussian
mean functions in the trended HMM. Assuming uncorre-
latedness among the polynomial coefficients in the trended
HMM, we obtain analytical results for the MAP estimates
of the time-varying mean and precision parameters. Ac-
cording to these results, the MAP estimates can be viewed
as a weighted average of the estimate that the classical ML
method would give and an estimate based on prior infor-
mation. To examine the performance of the extended tech-
niques, the MAP framework is applied to speaker adap-
tation experiments using TI46 corpora. The properties of
the MAP formulation for training the trended HMM is ana-
lyzed by examining goodness-of-fit of the raw speech data to
the polynomial trajectories in the model, and comparative
experimental results on alphabet classification are reported
which demonstrated the effectiveness of the MAP algorithm
for the trended HMM.

2. MAP ESTIMATES FOR TRENDED HMMS
Consider the trended HMM given by [2]:

O = XI'Bi+Re(o}), (1)

where R, ~ i.i.d. N(0,07), B; = [Bi(0) B;(1) --- Bi(P)]™"
is a (P + 1) x 1 vector of state-dependent polynomial re-
gression coefficients, X, = [(t—7:)° (t—=)! -+ (t—7)F]T"
is a (P 4+ 1) x 1 vector of exogenous explanatory variables
with (t — 7;) representing the sojourn time in state i. To
simplify the presentation of our approach, the data feature
vectors O, t = 1,2,---,T are assumed to be scalar-valued
observation data sequence of length T. The MAP formu-
lation requires a joint prior distribution for beth B; and
o? (which are treated as random variables in the Bayesian
analysis [4]).

Suppose the prior information about B; conditioned on
the value for o2 is represented by a Gaussian random vari-
able N(B;; ui,a? M;). Its probability density function is

(2r0?) "3 |Mi| =¥ exp [-0.5072 (B — i)™
MTU(B - )] (2)

f(Bilo7?) =
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Thus, prior to the observation of data samples, the best
guess to the value of B; is represented by the (P +1) x 1
vector u;, and the confidence in this guess is summarized
by the (P + 1) x (P + 1) matrix o7 M.;; a lower degree of
the confidence is represented by a larger diagonal element
of M;. Knowledge about the exogenous variable X; is pre-
sumed to have no effects on the prior distribution; hence
Eqn.(2) also describes the density f(Bi|o;?, X:). Following
[6], it is convenient to describe the prior distribution not in
terms of the variance o7 but rather in terms of the recip-
rocal of the variance, o 2, which is known as the precision.
The prior distribution for precision o; % is provided by the
gamma distribution [5]:

& _2pi-1)
Tp)”

where p; > 0 and ¢; > 0 are parameters that describe the
prior information. Thus, f(B;,07?), the joint prior density
for B; and o7, is given by the product of Eqn.(2) and
Eqn.(3), or a normal-gamma distribution. The choice of
such a prior density is made because the normal-gamma
density is the conjugate density of the normal distribution,
a fact that is essential for the analytical derivation of the
MAP estimates.
The MAP estimates are obtained according to

f(e7?) = exp (—gio7?),  (8)

Ormap = argmaze [Q(BlOo) +log f(B;,a,-‘z)] , (4)
where the simplified log likelihood function is given by

E E 'Yt(i) [0.5 log(a""’) — 0.50,'.—2

t=1 i=1

= (0. - X"B;)*]. (5)

Q(8160)

The quantity +:(z) is either to be one if the model gener-
ates O, in state ¢ at time ¢ or to be zero otherwise. The
maximization of Eqn.(4) is solved by using the expectation-
maximization (EM) algorithm. Due to space limitations, we
only summarize the final results for the MAP estimates of
B;, 0%, and of their prior parameters here:
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Moo= N @XM (6)
t=1
T
b= MY @)X+, (7)
t=1
T
G = 2+ Y ()0 - XB)
t=1
+(Bi — ) TTMTH(B; - i), (8
T
Fio= Y n@+@P+D+2m-1), (9
t=1
B = p, (10)
.2 gi
2 - % 11
& = 7 (1)
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According to the above formula, the MAP estimates can
be interpreted as a weighted average of the corresponding
prior information and of the sample data. The weights are
computed iteratively based on a combination of the prior
speaker-independent model parameters and of the new-
speaker data in a non-linear fashion. The difference between
the ML estimation procedure and the MAP procedure lies
in the assumption of an appropriate prior distribution of
the parameters to be estimated. By using a diffuse prior
information, represented as p; =0, ¢; = 0 and M 1=y,
the MAP estimates for B; and ¢? obtained above would
become identical to the ML estimates derived in [2].

3. SPEAKER ADAPTATION EXPERIMENTS

The experiments conducted to evaluate the MAP approach
are aimed at recognizing the 26 letters in the English alpha-
bet, contained in the TI46 speaker dependent isolated word
corpus. It is produced by 16 speakers, eight males and eight
females. The speaker-independent (SI) training set consists
of 26 tokens per word from each of six male and six female
speakers. For the remaining four speakers, up to ten tokens
of each word are used as adaptation training data, and the
remaining 16 tokens used as speaker dependent test data.

The preprocessor produces a vector of 26 elements con-
sisting of 13 Mel-frequency cepstral coefficients (MFCCs)
and 13 delta MFCCs for every 10 msec of speech. In com-
puting MFCCs, 25 triangular band pass filters are simu-
lated, spaced linearly from 0 to 1 kHz and exponentially
from 1 kHz to 8.86 kHz, with the adjacent filters overlapped
in the frequency range by 50%. The FFT power spectral
points are combined using a weighted sum to simulate the
output of the triangular filter. The MFCCs are then com-
puted according to

25
Ll
C, = ZS.- cos(px[r—0.5]xﬁ), 0<p<12

r=1

where S, is the log-energy output of the rth mel-filter [9].
The delta MFCCs are constructed by taking the difference
between two frame forward and two frame backward of the
MFCCs. This window length of 50ms is found to be optimal
in capturing the slope of the spectral envelope, i.e. the
transitional information [8]. The augmented MFCCs and
delta MFCCs are provided as the data input for every frame
of speech into the modeling stage.

Each word is represented by a single left-to-right, three-
state HMM (no skips). The speaker-dependent (SD) mod-
els are trained from adaptation data using five-iterations
of the modified Viterbi algorithm with single mixture for
each state in the HMMs [2]. To set up a baseline speaker-
independent (SI) performance on the test data set, we cre-
ated the SI models with a single mixture distribution for
each state in the HMMs, by combining the parameters in
the mixture components which had been well trained using
the SI training set. The combination formulas are

M
Z WmBim(p)v »p=01,.-..,P

m=1

Bi(p) =
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Number of Polynomial Order
Adaptation P=0 (S51=69.95%)
Tokens SD SA1l SA2

1 58.35% | 78.97% | 74.39%
p) 71.15% | 82.33 % | 80.41%
3 77.70% | 83.77% | 82.99%
4 82.69% | 84.80% | 84.08%
5 85.40% | 84.86% | 85.82%
6 86.66% | 86.60% | 86.24%
7 87.56% | 87.50% | 87.14%
8 87.98% | 88.46% | 87.56%
9 87.86% | 88.58% | 88.88%
10 88.28% | 88.65% | 89.66%

Table 1. Summary of speaker adaptation results for
constant-trended HMM (benchmark, P=0).

and the variance to be the variance of the corresponding
Gaussian mixture distribution:

M
2 2
gy = E Wmnoim,
m=1

where M, the actual number of mixture components used in
each state, is set to five, Wy, is the mixture weight, Bin(p)
is the time-varying polynomial mean coefficients, and o},
is the variance of the mth mixture component residing in
the ith state.

The initial prior density parameters are estimated first
from those of the SI mixture HMMs according to

1
D = m, (12)
q = 1.0, (13)
pip) = Y WBim(p), (14)
Mi(p) = : (15)

Pi Yoy Wen(Bim(p) — pi(p))’

These prior parameters are then updated over iterations of
the batch MAP algorithm according to Eqns.(6)-(9). Note
that M;(p) above denotes the pth element of the diagonal
correlation matrix M;. In the MAP batch estimation, the
parameters are updated after processing all tokens for each
iteration, in contrast with sequential adaptation where the
parameters are adjusted at the end of processing each token.
We will not address the sequential adaptation procedure in
this study. In all of our experiments, a total of five batch
adaptation iterations are performed.

The speech recognition rates, averaged over two males
and two females, are summarized in Table 1 and Table 2, for
conventional, stationary-state HMM (benchmark) and for
the trended HMM, respectively. Four experimental setups
have been used: 1) speaker-independent (SI); 2) speaker-
dependent (SD) ; 3) speaker-adaptation and adapting only
polynomial coefficients for the time-varying means (SA1);
and 4) speaker-adaptation and adapting both polynomial
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Number of Polynomial Order
Adaptation P=1 (S1=75.48%)
Tokens SD SAl SA2

1 46.82% | 84.14% | 75.78%
2 74.58% | 86.84% | 84.08%
3 82.51% | 88.11% | 87.02%
4 85.64% | 88.58% | 89.00%
5 86.48% | 88.76% | 90.08%
6 88.52% | 89.66% | 91.05%
7 88.58% | 90.08% | 91.89%
8 89.54% | 90.14% | 90.93%
9 90.20% | 90.39% | 91.47%
10 91.05% | 91.65% | 92.07%

Table 2. Summary of speaker adaptation results for
linear-trended HMM (P=1).

coefficients and precision matrices (SA2). The results in
Table 1 and Table 2 are shown as a function of the num-
ber of word tokens used in training from a new speaker.
Comparing results in Table 1 and Table 2, the effective-
ness of the MAP training on the trended HMM is clearly
demonstrated. For example, in the SA1 experiments, the
error rate reduction of 26.8% is obtained when moving from
P =0 (83.77%) model to P = 1 (88.11%) model with three
adaptation takens. The best recognition rate of 92.1% is
achieved when both polynomial coefficients and precision
matrices are adapted using all ten tokens of adaptation
data. The rate drops gradually with fewer adaptation to-
kens for both SA1 and SA2 experiments, with somewhat
faster drop for SA2 than for SAl. In contrast, for the SD
experiments, the recognition rates drop rapidly when the
training tokens reduce from ten to one.

The results in Table 1 and Table 2 also show that the
MAP estimates (SA1 and SA2) become approaching the ML
estimates (SD) in performance when the number of training
token increases from one to ten. This is reassuring because
under the asymptotic condition, the posterior density would
be dominated by the sample data likelihood function as
demonstrated in Eqn.(10) and Eqn.(11) with T — oo.

4. DATA FITTING RESULTS

To analyze the mechanisms underlying the superiority of the
MAP training on the trended HMM, we performed data fit-
ting experiments. Once the structure of the trended HMM
is determined, the MAP algorithm discussed in Section 2
is used to reestimate the ML-trained trended HMM pa-
rameters using a fixed set of adaptation data. The MAP
models are constructed using the SAl experimental setup
with one adaptation token. Fig. 1 shows the results of fit-
ting a test utterance (letter a from a first female speaker in
the TI46 speech corpus) using the benchmark (P=0) and
trended (P=1) HMMs. (Use of first-order MFCC, C), as
speech data here, shown in solid lines in Fig. 1, is for il-
lustration purposes only. Similar results are available for
higher order cepstral coefficients.) The top two subplots
of Fig.1 show the data-fitting results (dashed lines) for SI
benchmark HMM (left) and trended HMM (right) when
both models are trained by the ML method. The bottom
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Figure 1. Fitting three-state a /ey/ models (dashed-
lines) to a speech data sequence (solid lines)

two subplots show the corresponding results (dashed lines)
using the MAP-trained HMMs (SA1). In all the plots, the
solid lines are the real speech data, O, of the C; sequence
from a test token not used in adapting the HMMs. The
vertical axis represents the magnitude of C; and the hori-
zontal time axis is expressed in terms of the frame number.
For each sub-plot of Fig. 1, the two break-points in the
otherwise continuous solid lines correspond to the frames
at which the optimal state transitions occur from state one
to state two, and from state two to state three, respec-
tively. The dashed lines in all sub-plots of Fig. 1 are the
four different trend functions, varying in the polynomial or-
der (P = 0 or P = 1) and in the training procedure (ML or
MAP). These labels are shown at the head of each sub-plot,
together with the data-fitting error computed by a linear
summation of the residual squares over the states and over
the state-bound time frames.

It is observed that the MAP-trained trended HMM fits
the test token better than any other alternatives. For the
benchmark HMM, error reduction in data fitting by incor-
porating the MAP training goes from 2990 to 327. The
MAP method for the trended HMM plays a more significant
role of reducing the data-fitting error (a measure of better
modeling capability) from 2343 to 198. This suggests that
the time-varying mean parameters in the trended HMM
represent essential characteristics of a particular speaker
and they can be effectively estimated with a very small
amount of training data using the MAP training procedure.

5. SUMMARY AND CONCLUSIONS

In this study, the Bayesian adaptation technique using the
MAP approach is derived, implemented and evaluated for
optimally estimating the time-varying polynomial Gaussian
mean functions in the trended HMM. The main conclusions
can be summaried as follows. First, compared with speaker-
independent models, the MAP adaptive training procedure
achieves consistently better performance even with a single
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token in the adaptation data. Second, the trended HMM
always outperforms the benchmark HMM (with only one
exception where one training token is used in the speaker-
dependent mode). When ten training tokens are used to ob-
tain adaptive estimates for both the polynomial coefficients
and the precisions, the recognizer achieves the best recog-
nition rate of 92.1% (averaged over four speakers). Third,
adaptation of polynomial coefficients only is shown to be
better than adapting both polynomial coefficients and pre-
cision matrices when fewer than four adaptation tokens are
used, while the opposite is true for more adaptation tokens.
Comparisons of the alphabet classification performance and
of data-fitting results demonstrate the effectiveness of the
MAP-trained trended HMMs. A more detailed experiments
with use of higher order polynomial functions (P greater
than one) using the MAP approach is currently under way
and will be reported in the near future.
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