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ABSTRACT

This paper presents a new technique for modeling
heterogeneous data sources such as speech signals re-
ceived via distinctly different channels. Such a scenario
arises when an automatic speech recognition system is
deployed in wireless telephony in which highly hetero-
geneous channels coexist and interoperate. The prob-
lem is that a simple model may become inadequate to
describe accurately the diversity of the signal, resulting
in an unsatisfactory recognition performance. To deal
with such a problem, we propose a Generalized Mix-
ture Model (GMM) approach. For speech signals, in
particular, we use mixtures of hidden Markov models
(i.e., GMHMM, Generalized Mixture of HMM’s). By
applying discriminative training for GMHMM we ob-
tained 1.0% word error rate for the recognition of the
digits strings from the wireless database, comparing to
1.4% word error rate for the conventional HMM based
discriminative technique.

1. INTRODUCTION

The objective of this study is to find an efficient speech
modeling technique, allowing to cope with environmen-
tally adverse conditions([1]) for robust recognition per-
formance. Most existing approaches in dealing with the
robustness issue use transformation of the speech sig-
nals or their models. Signal bias removal([2], [3]) and
linear regression([4]) techniques may serve as examples
of such transformations. It is very difficult, however, to
find a universal transformation, applicable in the adap-
tation to different speech data, coming from highly het-
€rogeneous Sources.

In our modeling approach we assume that a Hidden
Markov Model is only sufficient in characterizing the
behavior of the speech signal from a known homoge-
neous source. When the signal source becomes het-
erogeneous due to the variety of the channels or noisy
conditions, a natural extension to a single HMM is a
mixture of HMM’s. Such a mixture of HMM’s may be
obtained by clustering the speech patterns, that repre-
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sent the same speech unit. In a conventional modeling
framework, each speech unit is represented by one sin-
gle HMM. Using clusters of samples belonging to the
same speech unit, we can create multiple representa-
tions of the unit in the form of several HMM’s, each
of them being produced by the corresponding training
procedure according to some universal criteria.

2. GENERALIZED MIXTURE OF HMMS
FORMULATION

Let us consider all speech tokens in training the HMM
for some particular segment of the speech(e.q., a word
or subword unit). A conventional HMM for the speech
unit can describe the behavior of the real speech signals
only approximately, because it does not take into ac-
count the correlation between the parts of the speech
signal assigned to the different HMM states. In or-
der to make speech modeling more accurate we pro-
pose to expand single HMM to a mixture of HMMs,
thereby delivering more precise description for the dif-
ferent groups of the speech signals. To implement that,
we have to split all speech samples involved in the single
HMM construction into several groups(clusters) and
then build individual HMMs for each of the groups of
the speech samples. The first problem that we come
across in connection with speech samples clustering is
the variable length of the speech samples. This obsta-
cle does not allow direct application of the traditional
clustering methods used for fixed dimensional vectors.
We apply a conversion procedure to overcome this prob-
lem. According to this procedure the position of a
speech sample is characterized by the set of distances
from the speech sample to the corresponding ele-
ments(states or mixtures) of the HMM. Let us con-
sider a speech sample O®), which is a representative
of the samples of the speech unit i. We define a dis-
tance from O®) to the corresponding HMM A() as fol-

lows. For each frame O(;),(l < f < F) of 09 let
d; (07 ]A®) be the distance(log probability) from O
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to the j-th state. Usually, this distance is a byproduct
of the Viterbi segmentation procedure. By averaging
the corresponding distances over all the frames assigned
to the same j-th state of HMM (%) after the segmenta-
tion we obtain fixed number of the vector components
describing a speech sample O():

F,
i)y (i 1 - 1y
GOOND) = 2 3 &OFND) ()

J fi=1

Here d;(O|A() is the average distance for all Fj
frames f; from the speech sample O, assigned to
the j-th state(l < j < N®) of the HMM A(®). So,
we’ve got a fixed number N(®) of the vector components
d;(O®)|A®)) representing the speech sample O0).

In a similar manner we can define a more detailed rep-
resentation of the speech sample by evaluating corre-
sponding distances to the states mixtures. For each
frame O, (1 < f < F) of 0% let djm(0F X)) be
the corresponding distances(log probabilities) to the all
state mixtures M;, representing the j-th state (1 <
m < Mj; 1< j < N®) of the HMM A(). By averag-
ing the corresponding vector components over all the
frames assigned to the same j-th state of HMM \(*) we
get the new representation for the sample ot):

F,

N 1 ’ s

dim(OPPD) = - 37 dim(OF)ND)  (2)
J fi=1

By introducing some distance measure between vec-
tors of the fixed dimensionality we can easily apply
traditional(like K-means) clustering procedure in or-
der to distribute all samples, associating the i-th unit,
into K () subsets and then create individual HMM A{)
(1 < k < K®)for each of the K() groups of the speech
samples. Such groups of cluster HMM’s, representing
the same speech unit, we’ll refer to as Generalized Miz-
ture of HMMs. So, during decoding we consider a mix-
ture of HMM’’s for each speech unit rather than a single
HMM for a speech unit.

Creating HMM mixtures for connected word or conti-
nuous speech recognition involves the notion of ’de-
coded unit trajectory’. The following diagrams illus-

trate the difference between generalized mixture of HMMs

and the conventional mixture density HMM. The ini-
tial parameters for the mixture density in an HMM
state may be evaluated by clustering the speech frames
assigned to the particular HMM state after segmen-
tation(Figure 2). In a similar manner, we cluster the
speech samples based on trajectories, associated with
a specific unit(Figure 2).

Clusters of the speech sample trajectories are be used
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Figure 1: HMM state mixtures, where
speech frames are assigned to an HMM state

Figure 2: Generalized mixture of HMM’s, where
speech samples trajectories are assigned to a speech unit

to create a new set of HMM’s, each of them deliver-
ing more accurate modeling for the different groups of
the speech samples. The conventional mixture den-
sity HMM, being inadequate to characterize the in-
terrelations between adjacent speech frames, may not
give the best possible recognition performance. With a
GMHMM set, an N-best algorithm is used to produce
N different cluster trajectories rather than N different
word strings. That is, different cluster trajectories may
be of the same lexical content (i.e., the same sequence
of words). The example below illustrates this point.

The output of the HMM-based N-best strings
(1 2 3) - the best digit string
(3 4 2)- the 2nd best digit string
(2 3) - the 3rd best digit string
The output of the GMHMM-based N-best strings

(1-b 2-a 3-a) — the best cluster trajectory
(1-a 2-a 3-a) — the 2nd best cluster trajectory
(3-b 4-c 2-b) — the 3rd best cluster trajectory
(1-a 2-b 3-b) — the 4th best cluster trajectory
(2-b  3-a) — the 5th best cluster trajectory

(3-a 4-b 2-a) — the 6th best cluster trajectory
1-b — denotes cluster b for digit 1.

In order to produce the best cluster trajectories at
each grammar node while runnig the N-best algorithm
we have to consider the alternative junctions between
different clusters representing the units rather than the
junctions between the units themselves.

In order to get scores for the competing lexical strings
we proposed a formula, which allows a combination of
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scores for different trajectories of the same lexical con-
tent:
Mw,

=Y exp(u- g(O|A, W)
m=1

(3)

Here, p > 0, W, is the r-th lexical string after N-
best decoding(l < r < R), W™ is the m-th cluster
trajectory, corresponding to the r-th lexical string(1 <
m < Mw,), 9(O|A, Wr(m)) is the score for the cluster

trajectory Wr(m), A is the set of the cluster HMMs.
It should be clear, that

1
G(O|A, W,) = =10
(O] ) 108 | 9

r

R
Y M, =N, (4)
r=1

where N is the total number of the best cluster trajec-
tories produced by the N-best algorithm.

3. DISCRIMINATIVE TRAINING FOR
GENERALIZED MIXTURE OF HMMS

We further cast the GMHMM modeling technique in
the framework of discriminative training. Proper use
of the GPD method([5]), applied to the component
HMM’s, combines the advantage of the more accurate
modeling, obtained by the GMHMM approach, and the
discriminative power of the GPD method. According
to the GPD formulation we use a gradient-descent tech-
nique to minimize the expectation of the classification
error defined according to the formula:

1
= T+ exp(—7D(O[A))

L(0|A) ,¥>0 (5)

The value of D(O|A) for the GMHMM is defined as

follows:

1 1
D(O'A) = - G(OlA, Wi) + ;log [R_—l‘

R
- > exp(nG(OJA, Wr))} ,n>0 (6)
r#i

Here, W; is the correct lexical sequence.

In applying the gradient-descent technique we have
to evaluate partial derivatives for all parameters of the
GMHMM. For some arbitrary HMM parameter « a
corresponding estimate takes on such a form:

BUOIN) _ < B0(OlA)  OG(OIA, W)

8a - £ 5G(OIA, W,) dax @
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The first term in the last formula may be evaluated
as follows:
0LOJA)  _ 9¢O]A) ' 0D(O|A) (8)
dG(O|A, W,) — 8D(O|A) BG(O|A, W,)

The expressions for the derivatives in the formula
(8) are well known([6]).

In turn, the second term in the formula(7) may be
evaluated according to the formula:

OG(OIA, Wy) _ % OG(OIA, W) 0g(OIA, WE™)
Oa =t 99(01A, Wi™) Oa

9

. 8G(O|A,W,
The derivative EIE()I_AIY_WWF}) may be evaluated as

follows:

8G(OlA, W,)
89(0[A, WE™)

M.,
> exp(u - g(O]A, Wi™))

m=1

= exp(g(O|A, Wi™)) -
-1

(10)

The above formulas allow to apply the GPD method
for optimization of the GMHMM parameters.

4. EXPERIMENTAL RESULTS

We conducted experiments to verify the effectiveness
of the proposed GMHMM approach. Wireless data of
connected digit strings recorded over analog AMPS and
digital cellular (TDMA with IS-54 coding) channels
were used in the experiments. The collected data in-
clude different channel and noise conditions(from clean
speech to hardly audible speech, contaminated mainly
by environmental car noise). The digit string length
in the database ranges from 1 to 30 digits. In the ex-
periments we used context-dependent subword units.
FEach digit was represented by a concatenation of its
head, body and tail models. Altogether 274 context
dependent such units were employed. For GMHMM
approach K-means clustering technique([7]) was ap-
plied to obtain subsets of the training data used to
build corresponding cluster HMM’s(GMHMM). First,
we conducted comparative experiments using 2 differ-
ent distance measures(egs. (1) and (2)) For MLE train-
ing(MLE stands for speech models obtained by the
maximum likelihood estimation) of the GMHMM, we
obtained 2.4% word error rate for the states based dis-
tance measure(eq. (1)) and 1.9% word error rate for the
state mixtures based distance measure(eq. (2)). So,
in the experiments, based on the discriminative train-
ing of GMHMM, formula (2) appears to be a more

1445



efficient distance measure. The total number of the
clusters obtained via K-means(K = 5) algorithm, af-
ter outliers were removed subsequently, was 678. In
both representations(HMM and GMHMM) 8 mixtures
per a statewere used. The recognition results are sum-
marized in the following table, where word error rates
are tabulated for the traditional HMM approach and
GMHMM approach:

Wireless Data Recognition Performance

Model MLE | GPD
HMM 2.6% | 1.4%
GMHMM | 1.9% | 1.0%

From the performance table it is observed that the pro-
posed GMHMM technique outperforms the traditional
single HMM approach by a significant margin. We also
conducted the experiment of MLE training for the con-
ventional HMM’s using approximately the same total
number of parameters as for GMHMM approach. To
implement that, we used 20 mixtures per a state for
HMM(versus 8 mixtures per a state for GMHMM). The
word error rate obtained in this experiment was only
2.4%(versus 1.9% for GMHMM).

5. CONCLUSIONS

The proposed GMHMM speech representation allows
us to achieve more accurate modeling of heterogeneous
data by using several clustered HMM’s per speech unit
rather than a single HMM. Experiment showed that
the use of the GMHMM reduced word error rate in a
continious speech recognition task, using either MLE
or GPD training technique. It was found, that the
quality of GMHMM depends on the distance measure,
chosen for the speech sample clustering. Further im-
provements of the proposed method may be achieved
by finding a more relevant cluster distance measure
and by modifying the corresponding clustering tech-
nique. In order to reduce the computational complex-
ity, caused by the increased number of the HMMs, the
possibility of tying across clusters for different speech
units may be explored. Additionally, such procedure
may yield better recognition performance because of
the more efficient use of training data. Also, in order
to achieve faster implementation it is worth to consider
the possibility to use GMHMM representation in the
second pass of the recognition after obtaining N-best
candidates in its the first pass with a traditional HMM
representation.
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