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ABSTRACT

We describe the first sentence understanding system that is
completely based on learned methods both for understanding
individual sentences, and determining their meaning in the
context of preceding sentences. We divide the problem into
three stages: semantic parsing, semantic classification, and
discourse modeling. Each of these stages requires a different
model. When we ran this system on the last test (December,
1994) of the ARPA Air Travel Information System (ATIS) task,
we achieved 13.7% error rate. The error rate for those sentences
that are context-independent (class A) was 9.7%.

1. INTRODUCTION

Language understanding systems that use a large set of rules to
explain the syntactic and semantic possibilities for spoken
sentences suffer from a lack of robustness when faced with the
wide variety of spoken sentences that people really use.

One reason for this lack of robustness is that rule based systems
must compromise between coverage and overgeneration.
Coverage can be increased by writing new rules, or by relaxing
the preconditions on existing rules. But each of these
alternatives increases the likelihood of spuriously triggering an
incorrect rule. Conversely, overgeneration can be reduced by
removing rules, or by making the preconditions of existing rules
more specific. But these alternatives increase the likelihood of a
rule not being available when it is needed. In general, the
approach taken in constructing rule-based systems is to increase
coverage until the damage inflicted from additional rules
outweighs the benefit of those rules. This process requires
substantial expertise, and usually leaves some of the domain
uncovered.

Although statistical approaches have been used to solve small
parts of the problem, such as part-of-speech taggers [1] and
probabilistic syntactic parsers [2], most systems are still
fundamentally rule-based, using these statistical approaches
only to provide the input or to decide among choices that are
already within the model. Levin and Pieraccini [3] used a
semantic tagging process to decide on the likely semantic uses
of words within a sentence. But still, they require a significant
rule base to make sense out of the sequence of semantic events.
[4] has developed a system that translates word sequences for
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context-independent sentences into unambiguous meanings but
the reported error rate is quite high (25% to 30%) and they have
not included any mechanism for modeling the discourse effects
of previous sentences on the meaning of the current sentence.

We have developed what we believe to be the first system for
spoken language understanding that is based completely on
trained statistical models, derived from annotated corpora. The
annotation is relatively straightforward, since it is largely based
on a simple representation of the semantics of the domain. We
call the system a Hidden Understanding Model (HUM) because,
as with the HMM used in speech, each state in the model has all
possible outputs, and we search for the most likely meaning
given the input words, according to our model. (Of course the
model must be redesigned for the problems in language
understanding.) This system is easily and naturally combined
with the n-best speech recognition answers output from a speech
recognition component.
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Figure 1: Elements of statistical modeling system.

2. METHODOLOGY

In principle, the problem of understanding a sentence is simply
a matter of finding the meaning, My, of a sentence in the context
of a discourse, given the sequence of words, W, and the
discourse history, H. This is P(Mg | W, H). We factor the
problem of establishing meaning into different levels with an
appropriate model for each part of the problem (see Appendix A
for a complete derivation). These models capture the basic
hierarchical nature of language. We use four stages in our
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model: Semantic Parsing, Semantic Classification, Discourse,
and Query Generation. Each of these stages, except the final
Query Generation stage, is modeled as a stochastic process that
associates input expressions with output expressions. For
example, in semantic parsing, the input expressions are
sentences and output expressions are semantic parse trees.

Figure 1 shows the elements of a statistical modeling system
that associates inputs with outputs. Our overall approach
contains three such systems, one for each stage in our model.
Initially, each system is trained by presenting it with pairs of
input and output expressions. Later, when that system is
presented with a new input expression, it should be capable of
producing the correct output expression.

The critical elements of each statistical modeling system are:

1. Notational systems for representing input expressions and
output expressions.

2. A statistical model that is capable of representing the
association between input expressions and output
expressions.

3. An automatic training program that, given a set of training
examples, can estimate the parameters of the statistical
model.

4.  An decoding program that can search the statistical model
to find the most likely output expression given an input
expression.

3. SEMANTIC PARSING

The purpose of the semantic parse is to model how the user said
something. The first stage assumes that the word sequence, W,
was generated by a probabilistic semantic grammar. We find
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the n-best semantic parses (trees), 7, that are most likely to have
generated the word sequence, according to the measure
P(T) P(W|T). Figure 2 shows an example of a semantic parse
tree used by our system.

The model of word sequences reflects the nested structure of
language. For each nonterminal in the language we have an
ngram language model on the sequence of symbols that it
produces. The probabilities in the ngram model depend on the
particular nonterminal. This model was first proposed by Seneff
[5]. We have incorporated several minor differences that
provide a stronger model while being somewhat more robust to
lack of training data. Thus, the prior probability, P(T) is
modeled by the ngram transition probabilities on the
nonterminals, while P(W|7) is modeled by the ngram
probabilities on the words at the leaves of the tree.

We have decreased the cost of annotating a large number of
sentences substantially by wusing a commonly used
semiautomatic procedure in which we use the decoder to find
the most likely parse for each sentence, and then have a human
verify the annotation, which is much faster than entering the
annotations manuaily.

The estimated probabilities are smoothed in two ways. The
node labels contain both semantic and syntactic labels. We
back off to a model that treats the semantic and syntactic labels
independently, which requires much less training. In addition,
we back off from a trigram to a bigram and unigram according
to the formula in Placeway [6].

4. SEMANTIC CLASSIFICATION

The semantic trees are not, in themselves, unambiguous
meanings. Given the set of candidate semantic parses, 7, we
must find the n-best surface meaning frames, M, that maximize
P(Mg, TY P(W|T). To represent meaning we use a simple

arrival
vp
flight-constraints
/rel-clause
departure
~p
flight departure location
/corenp /pp /pp
time flight departure  departure  city arrival location  city
/wh-head /aux  /det /np-head /comp /vp-head /prep Inpr /vp-head  /prep /npr
When do  the Slights that Jfrom Boston  arrive in Atlamta

Figure 2: A semantic parse tree.
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nested frame language, as shown in Figure 3. We treat this as a
semantic classification problem. We determine which type of
frame we are dealing with by rescoring the semantic parse with
probability estimates that depend on the particular type of
frame.

Air-Transportation
Show: (Arrival-Time)
Origin: (City "Boston")
Destination: (City "Atlanta")

Figure 3: A sample semantic frame.

Next, we consider what to do with each concept associated with
a preterminal in the semantic parse. Each concept can be used
to fill any of the slots in the frame, while many concepts do not
fill any slot. We use a statistical decision tree as used by [2] to
find the probability of each possible action. The decision tree
can ask questions about the semantic and syntactic categories of
symbols that are up to two siblings to the left and right, and four
immediate ancestors -- up the tree.

5. DISCOURSE

The meaning can be changed due to preceding history, H.
Based on the relations between current and previous frames, we
determine the most probable after-discourse frame, maximizing
P(Md | H, Ms) P(Ms, T) P(W | T). We assume that each
meaning frame has two stages: the surface meaning, Mj, derived
directly from the sentence (what you said), and the discourse
meaning, M, in context (what you meant).

We annotated about 4,500 sentences with the before-discourse
and after-discourse frames. For the present, our discourse
model is concentrated on deciding which of the fields should be
inherited from the previous related sentence. We compute the
probability that we would inherit a particular field, given that it
is was previously specified and is not mentioned in the current
frame, and given each of the other ficlds that have been
modified or not modified. Using Bayes' rule and an
independence assumption, we get

P(inherit; | MOD) = P(inherit,) H P(mod, |inherit;)
J

where mod; is the binary value of whether field j has been
modified (initialized or changed), and inherit; is the binary
value of whether field i should be inherited (or reset). We find
that, on held out data, only 5.0% of all of the after-discourse
frames have one or more incorrect fields, when starting with the
correct before discourse frame.

6. GENERATING DATABASE QUERIES

Given the final, unambiguous semantic frame, we produce an
SQL expression that carries out the request implied by the
meaning. While this process should not introduce any errors,
we found that the rules for creating answers (the “Principles of
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Interpretation”) for ATIS are quite complicated. After spending
one month on writing this translation, we find that 3.5% of the
meanings are not translated correctly. We expect that this
number can be reduced with additional work.

7. EXPERIMENTS

For our experiments we used the ARPA Air Travel Information
System (ATIS) domain, which consists of sentences collected
from naive users [7] [8]. The complete HUM system was
trained on 4,500 annotated ATIS2 and ATIS3 utterances and
was run on whole sessions -from words to answers - on the
December 1994 test set of the ARPA ATIS (Air Travel
Information Service) task. The error rate was 13.7%, of which
3.5% were wrong because the translation to SQL failed. On the
“class A” subset of the sentences, which were annotated as
context-independent, the error rate was 9.7%.

8. SUMMARY

We have developed a sentence understanding system that is
completely based on learned statistical models. The system uses
three statistical models for semantic parsing, semantic
classification, and discourse processing with a different
statistical model that is appropriate for each level. While we do
not claim that the models used are necessarily the best ones, the
results are quite satisfying, in that a method based completely
on statistical methods resulted in reasonable performance.

APPENDIX A: MODEL DERIVATION

Given a string of input words # and a discourse history H, the
task of a statistical language understanding system is to search
among the many possible discourse-dependent meanings Mp
for the most likely meaning My:

My =argmax P(Mp, |W,H).

Mp

Directly modeling P(Mp | W, H) is difficult because the gap that
the model must span is large. A common approach in non-
statistical natural language systems is to bridge this gap by
introducing intermediate representations such as parse structure
and pre-discourse sentence meaning.  Introducing these
intermediate levels into the statistical framework gives:

Mo =argmax Y P(Mp|W,H, Mg, T)P(Mg.,T |W,H)
My M, T

where T denotes a semantic parse tree, and Mg denotes pre-

discourse sentence meaning. This expression can be simplified

by introducing two independence assumptions:

1. Neither the parse tree T, nor the pre-discourse meaning Mg,
depends on the discourse history H.

2. The post-discourse meaning My does not depend on the
words W or the parse structure T, once the pre-discourse
meaning Mg is determined.

Under these assumptions,
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My =argmax Y P(Mp|H, Mg) P(Mg,T|W) .
Mp  M,T
Next, the probability P(Mg,T|W) can be rewriiten using
Bayes rule as:

P(Ms,T) POW| Ms,T)
P(W)

P(Ms,T|W)=

leading to:

b

P(Ms,T) P(W| Ms,T)
P(W)

My =argmax Y P(Mp|H, My)
Mp M, T

Now, since P(W) is constant for any given word string, the
problem of finding meaning Mp that maximizes
S P(Mp | H. M) P(Ms,nPP(Wl Mg, T)
Mot )
is equivalent to finding Mp that maximizes

Y. P(Mp | H,Mg) P(Ms,T) P(W| Mg, T).
Mg, T

Thus,

Mo =argmax Y P(Mp|H, Mg) P(Mg,T) P(W| Mg, T).
Mp M, T
We now introduce a third independence assumption:

3. The probability of words # does not depend on meaning
Mg, given that parse T is known.

This assumption is justified because the word tags in our parse
representation specify both semantic and syntactic class
information. Under this assumption:

M, = argmax ZP(MD | H,Mg) P(Mg,T) PW|T)
Mp  MT
Finally, we assume that most of the probability mass for each
discourse-dependent meaning is focused on a single parse tree
and on a single pre-discourse meaning. Under this (Viterbi)
assumption, the summation operator can be replaced by the
maximization operator, yielding:

My = argmax(ﬂax(P(MD | H, Mg) P(Mg,T) P(W|T) )J
Mp S

This expression corresponds to the computation actually
performed by our system.
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