EVALUATION OF FAST ALGORITHMS FOR FINDING THE
NEAREST NEIGHBOR

Stephane Lubiarz, Philip Lockwood
Matra Communication, Speech Processing Department
rue J.P. Timbaud - BP 26, 78392 Bois d'Arcy Cedex, France
Email stephane.lubiarz@matra-com.ft, philip.lockwood@matra-com.fr

Abstract

In speech recognition systems as well as in speech coders
using vector quantization, the search for the nearest
neighbor is a computationally intensive task. In this
paper, we adress the problem of fast nearest neighbor
search. State of the art solutions tend to approach
logarithmic access time. The problem is that such
performance is generally achieved at the expense of a
significant increase in storage requirements, In this

contribution, we compare several known approaches and

propose new extensions. These new contributions allows
for a significant reduction in memory requirements
without impacting the performance in terms of number of
distances computed and optimality of the search.

I. Introduction

The now widespread HMM approach used in speech
recognisers having discrete or continuous representations of
the state likelihoods, or the celp-based speech coders also
widely present in standards, make extensive use of distance
computation and search for nearest neighbor. The question of
the implementation of these algorithms for real-time
applications can become a critical issue.

Bocchieri {1] has shown that computing only k likelihoods
(the k nearest neighbors in fact) does not deteriorate
performance of a speech recognition task. Similarly,
Lockwood [3] showed that fast search can reduce the
computational load of an isolated word recognition task by a
significant amount. There is an extensive litterature on fast
nearest neighbor search. Three factors have to be considered
to characterise the methods: the search efficiency, the storage
cost overhead and the complexity of the training phase.
Fukunaga & al [2] propose a Branch And Bound algorithm
with stopping rules exploiting the triangular inequality
properties of the Euclidean distance. This technique has been
improved by Lockwood [3] by incorporating a new stopping
rule, allowing a reduction in memory requirement. Sethi [4]
proposed a (sub-optimal) technique based on the
classification of space according to the distance to some
reference points. Bakamidis et al. [5] incorporate a condition
to this algorithm for suppressing the distortion between the
computed Nearest Neighbor and the real Nearest Neighbor.
Kim and Park [6] propose a (sub-optimal) Branch And
Bound algorithm with stopping rule based on the minimal
distance between a point and a cube. Cheng and Gerscho [7]
propose an algorithm based on an adaptive cut of the space
by a cube and a stopping rule.

This paper presents adaptations of the algorithms proposed
by Lockwood [3] and Kim and Park {6], with the goal of

Copyright 1997 |IEEE

reducing the memory requirement without losing optimality.
We will compare these algorithms with the « standard »
implementations on one hand, and other shemes on the other
hand: Sehti algorithm revisited by Bakimidis [S] and with a
fast search based on the use of Voronoi diagrams.

II. Fukunaga revisited algorithm

The Fukunaga algorithm creates a data structure on the initial
set of vectors. The approach consists in decomposing the
vector Euclidean space into a set of embedded hypervolumes.
A tree structure is created with at each node an hypersphere.
Each hypersphere is decomposed further into smaller
hyperspheres. This decomposition process is pursued until a
hypersphere contains a minimal number of vector points.
Each node of the tree is characterised by the center of the
sphere, its radius, the number of sons. Each leaf of the tree
contains one or several vectors belonging to the initial
codebook.

The center of the hypersphere is obtained by a k-means
algorithm: the centroid of the cluster is used as
representative. The stopping rules of the Branch And Bound
algorithm are given herafter [2], [3]:

Let B be the distance to the current Nearest Neighbor, rp is
the radius of the current sphere and d(x,Mp) is the distance
between the unknown point x and the center of the current
hypersphere.

Rule 1 .If B+rp<d(x,Mp), then the points contained in the
hypersphere cannot be Nearest Neighbor candidates.

Rule 2 .On a leaf node, If B+d(xj,Mp)<d(x,Mp), then x;
cannot be the nearest neighbor of x.

In fact these rules indicate whether there is an intersection
between the hypersphere centered on x, having B as radius,
and the current Hypersphere.

e d(xMp) ‘

Figure 1: when rule | is satisfied, the algorithm
forgets the node.

A@Ih~.

Figure 2: when rule 1 is not satisfied, the algorithm
searches into the son node.

1491

The last rule is a stopping rule as described in [3]:

let D be the distance between the current Nearest Neighbor
and its Nearest Neighbor in the codebook.

Rule 3 : If 2B<D, then the current nearest neighbor is the
« true » nearest neighbor.

X,

Figure 3: lllustration of rule 3: X| is the current nearest
neighbor, X7 is the nearest neighbor of X|. The
condition is true, X| is the « true » nearest neighbor.

Lockwood [3] proposes to replace the hypersphere
representative (centroid) by vector belonging to the original
space. The criterion used for the selection is the min-max
condition: the center is the nearest neighbor to the cluster
centroid and is called the min-max representation. By using
this approach, we obtain a degradation in terms of search
efficiency, but the memory overhead requirement has been
kept low. This is particularly attractive as the dimension of
the vector space increases.

The degradation of the performance is due to the fact that the
overlapping between the new spheres is greater than before.
As a consequence, the first stopping rule is less efficient and
the third stopping rule is generally found not sufficient for
compensating for the degradation.

In order to overcome this problem we introduce a new
procedure for rearranging the tree. The algorithmic structure
is given below:

. For every pair of hyperspheres, draw the line passing
through the two centroids obtained by the k-means
algorithm.

. For each hypersphere of the pair, choose the orthogonal
projection, for each vector included in the sphere, which
gives the greatest distance with the initial minmax of the
other hypersphere. Take as center of the hypersphere the
Nearest Neighbor in the dictionary of this orthogonal
projection.

. If the new center is nearer to the center of one of the other
hyperspheres, keep the old center. Else the nearest neighbor
of the orthogonal projection is the new center of the
hypersphere. By this procedure, we move the exterior
hyperspheres away on the peripheral of the base. The radius
of these hyperspheres tend to be greater. So the separation
between hyperspheres tends to be a hyperhyperplane, which
minimises the overlapping between the hyperspheres.

Copyright 1997 IEEE

Figure 4: In bold are the spheres generated by the initial
representation (C], C2). In dotted lines, the volums obtained
by the new representation (X, X3).

HI. Kim & Park revisited

This algorithm is based on the distance between a point and a
cube. Imagine that the space is decomposed into cubes, as in
this figure for p=2:

A&

Figure 5: Decomposition of the space

We decompose the space in order to have the same number
of points in each cube, and finally represent the codebook
with a tree: each level of the tree corresponds to a dimension
of the space, each node contains the boundaries of each cube
for the dimension considered and each leaf contains the
various points of the codebook.

- bl al bl bl +o

ob2 a2b2 a2+ -©ob2 a2b2 a2+tw b2 a2b2

Kim & Park use the iterative distance computation:

D?, +min[(xi —a;),(x; - b;)z]fori efLp-1]
D? ={0ifi=0

DZ +(xp, —ap)?ifi=p
During the search in the tree, we compute the iteration of the
distance for the dimension considered. In a node, if D;>B,
with B the distance of the current nearest neighbor, then none
of the points present in the cube can be nearest neighbor.

This is due to the fact that Dj is the minimum distance
between the unknown point and the cube in dimension i. So,

1492

if Dj{>B, all the distances between the unknown point and the
points of the codebook in the cube will be greater than B.

In fact, when we use this method, we observe that the nearest
neighbor found is not all the time the «true» nearest
neighbor. For example, on a codebook composed of 256
vectors in dimension 3, we obtain 18,3% of errors.

We propose the following modification for distance
computation:

Diz_] +
0 otherwise
D =10ifi=0

Dy +(xp—ap) ifi=p

By using this modified distance computation, we are sure that
the point found is the « true » Nearest Neighbor.

The number of hyperhyperplanes can be made variable
according to the variance on each axis. If we call Nb the
number of points in the codebook, Nb; the number of
hyperhyperplanes for the axis i and Vj the variance of the
axis i, we pose that

V.
Nbi = aPi with Pi = ?l—
2V

i=1

At the same time, we want ideally only 1 point per cube:

P
[INb; =Nb s0:Nby =R ——— aNbVP
I

i=1

In fact, because the Nb; are integers, we round off Nbj to the
lower integer, and add 1 to all Nb; from the greatest to the

p
least until []Nb; >Nb . By this procedure, we are sure to
i=1

have at least 1 point in each cube, but sometimes 2.
IV. On the use of the Voronoi diagrams

Representing the points of a codebook in a Voronoi Diagram
is something leading to optimal performance. Nevertheless,
such approach is difficult to implement, especially as the
dimension of a vector increases (>6). Thus the Voronoi
diagram principle is approached heuristically. For example.
Gersho & al [7] propose a tree-like structure and derive
separation functions using Voronoi hyperhyperplanes, and
construct the tree by choosing which Voronoi polygon is on
the right or on the left of the current hyperhyperplane. In this
algorithm, we use the same representation as for Kim & Park:
the space is cut by hyperhyperplanes orthogonal with each
dimension. We use this representation on the Voronoi
diagram, for filtering this space (fig 6): each point whose
polygon is in the cube, will belong to it.

Copyright 1997 IEEE

minf(x; - ;)2 6x; —bi)zl ifx; e[ai,b;] forie[t,p-1]

Ihoa
a

|

Figure 6: filtering of the Voronoi diagram

During the search, the cube in which the unknown point lies
is found straightforwardly. We do a full search on the points
present in the leaf node represented in the selected cube.

The critical point in this representation is the cutting of the
space by hyperhyperplanes. If the cutting is not done very
well, one could have a totally unbalanced tree and the method
would loose its efficiency. A complete study about this topic
could be found in [8].

V. Experimental results

We have compared these various algorithms on different
codebooks used in speech recognition or in speech coders.We
give here the results obtained with codebooks composed of
LSP coefficients {9].

mber of points 128 256 516
Enube%f\
hyperhyperplans
10 4.31 7.34 10.95
20 3.1 431 5.6
30 2.78 3.45 4.36
40 2.61 3.21 3.8
50 2.54 2.96 3.55
60 2.49 2.81 3.39
100 238 2.61 3.05

table 1. number of distances computed when using Voronoi
diagram with p=3.

codebook 1 codebook 2 codebook 3
Nb=256 p=3 | Nb=512p=3 | Nb=256 p=4
Sehti 16.23 1832 19.01 11324 |17.14 1849

Fukunaga 58.75 [3.55 |74.97 }49 56.63 |3.53

Fukunaga 50.12 |32 67 399 |5l 3.47
revisited

KimParev. |53.13 [3.18 {89.84 {432 [42.54 [4.52

table 2: The first column is the Number of computed
distances, the second the duration of the search.

1493

0 P Q
Sehti o(NlogpN) 2.ref N o(logaN)
Sehti o(N2%) (2+ref) N o(logaN)
revisited
Fukunaga o(NlogyaN) C.(P+1) +N o(logaN)
Fukunaga {o(N%) C+N oflogaN)
revisited
Kiqn&:aPark o(NlogaN) 121 Cpe, +P o(logaN)
revisited -1 '
Voronoi ofp N 2(}\21 + 1)) _IEIICPea(l +Moy) o(Moy)

table3: Comparison between the algorithms tested in terms of
learning stage complexity, search complexity or memory
requirements. O is the learning stage complexity, P the
memory requirement and Q the search complexity. We note N
the number of points in the codebook, P the space dimension,
ref the number of reference points (for Sehti algorithm) C the
number of nodes of the tree, Cpe; the number of
hyperhyperplanes (for Voronoi or Kim&Park algorithm) and
Moy the average number of points in each cube (for Voronoi
algorithm).

By analysing the results, we could see that the algorithm
based on the Voronoi diagram seems to be the best in terms
of number of distances computed. In theory, it is possible to
generate a tree leading to the computation of only one
distance. But this is at the expense of the memory
requirement. That is why this algorithm is not comparable
directly with the other methods. If the memory space is
sufficient, this algorithm will yield the best results. But
otherwise the revisited Fukunaga algorithm performs best.
This algorithm offers the best compromise among the
algorithms tested in terms of number of distances computed,
complexity of the training and memory requirements.

The modified Sehti algorithm gives a very small number of
distances to be computed. But the duration of the search is
anyhow long, because the number of comparisons is large.
And anyhow, when the dimension of the space grows, the
number of computed distances increases so much that for a
codebook of dimension 10, Fukunaga revisited becomes also
better in terms of number of computed distances.

The final figures are codebook dependent, but the
classification of these different algorithms will not differ
from one codebook to another. Two properties of the
codebook are important: on¢ is the topology of the points, the
other is the ratio between the number of vectors and their
dimension. The importance of the second characteristic could
be seen in figure 5: the larger the dimension of the vectors,
the higher the number of vectors in the codebook needed in
order to keep the ratio between the number of computed
distances and the number of vectors in the dictionary
constant. In fact, it seems that a quadratic relationship
between p and Nb must be fulfilled in order to maintain the
efficiency of the search.

Copyright 1997 IEEE

70 140 210 280 350 420 490 560 630 704

Figure 5: Number of computed distances function of Nb for th
Fukunaga revisited algorithm. Each curve represents a different p.
Here 3 <p <21.

V. Conclusion

In this paper, we have presented an evaluation of state of the
art fast nearest neighbor search algorithms. New evolutions
have also been proposed. One of the main conclusions are
that we show here that the revisited Fukunaga scheme, offers
the best compromise among the important factors
characterising fast nearest neighbor search algorithms
(memory requirements, number of distances computed,
duration of the search). An optimal version of Kimé&Park
algorithm has also been proposed. Among the possible areas
for improvement, one axis would be to combine « the best »
among a few carefully selected schemes. The second axis is
the developement of algorithms which will overpass the
dimensionnality versus codebook size paradigm.

References

{1] E. Bocchieri., "Vector quantization for the efficient computation
of continuous density likelihoods", ICASSP 94, 11. 692-695.

[2] K. Fukunaga and P.M. Narendra, "4 Branch and Bound
algorithm for computing k nearest neighbors", \EEE trans. on
computers, July 1975.

[3] P. Lockwood, "4 low cost dtw-based discrete utterance
recogniser", EICPR-86, pp 467-469.

[4]1 LK. Sethi, ” 4 fast algorithm for recognising nearest neighbors”,
IEEE trans. on Systems, Man an Cybernetique, vol. 11, Num 3,
March 1981.

[5] S.G. Bakamidis an Y.S. Boutalis, "4 new fast algorithm to
identify the nearest neighbor", Signal Processing VI, Theories and
Applications, Volume I, pp 539-542, Aug 1992.

[6] B.S. Kim and S.B. Park, "4 fast nearest neighbor finding
algorithm based on the ordered partition”, 1EEE trans. on patt.
anal.,Vol 8 N°6, nov. 1986.

[71 Y. Cheng and A. Gersho, "4 fast codebook search algorithm for
nearest-neighbor pattern matching”, ICASSP 86, pp 6.14.1-6.14.4.
18] K. Ramasubramanian and Kuldip K. Paliwal "Fast
K-Dimensional Tree for Nearest Neighbor Search with Application
to vector Quantization Encoding” 1EEE trans. on sig. pro., Vol 40,
N°3, March 1992.

[9] Kuldip K. Paliwal and Bishnu S. Atal “Efficient Vector
Quantization of LPC Parameters at 24 Bits/Frame" 1EEE tr. on
speech and audio pro., Vol 1, N°1, January 1993.

1494

