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ABSTRACT

As a noise robust HMM, we previously proposed

a frequency-weighted HMM (HMM-FW) whose
covariance matrices are replaced by the inverse
of frequency-weighting matrices. In this HMM,
the frequency-weighting parameters were common
to all classes and states, and were experimen-
tally adjusted. In order to achieve further noise
robustness, this paper examines the class- and
state-dependent weighting parameters and their
minimum error classification training (MCE) of
their weighting characteristics. Using the NOI-
SEX-92 database, the MCE-trained HMM-FWs
are shown to be more robust even under untrained
noise conditions than both the previous HMM-FW
and conventional HMM.

1. INTRODUCTION

The approaches to noise robust speech recogni-
tion are broadly classified into speech enhance-
ment [1],[2] in the front end and robust parameter
and/or pattern matching in the recognition phase
[3],[4],[5],[6], [7]. In HMM-based speech recogni-
tion, adaptation methods such as PMC [4] are
very successful at moderate noise levels. How-
ever, these approaches may be difficult to adapt to
rapidly varying environmental characteristics. In
order to cope with this difficulty, it is important to
make HMMs themselves robust to such variations.

As a noise robust HMM, we previously proposed
a frequency-weighted HMM (HMM-FW) (8] sim-
ilar to robust distance measures [5], [6], citem-
atsu90. This HMM has been proved to be ro-
bust to additive noise over a wide range of SNR
due to the use of both the group-delay spectra
and the fixed covariances derived from frequency-
weighting coefficients. Although HMM-FW can
not deal with severe noise conditions, unlike adap-
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tation approaches, it can be combined with speech
enhancement techniques to achieve further robust-
ness [9].

In the previous frequency-weighted HMM, the
frequency-weighting parameters were common to
all classes and states, and were experimentally ad-
justed based on recognition tests [8]. In order to
achieve further noise robustness, this paper exam-
ines the class- and state-dependent weighting pa-
rameters and their minimum error classification
training (MCE) [10],{11] in optimizing the weight-
ing characteristics.

In the next section, the frequency-weighted
HMM is described, followed by section 3 in which
the MCE training procedure is presented. In
section 4, the performance of the MCE-trained
frequency-weighted HMMs is compared with those
of the previous HMM-FW and conventional HMM
under large variety of noise conditions, using the

NOISEX-92 database.

2. FREQUENCY-WEIGHTED HMM

In frequency-weighted HMMs, we use a p-
dimensional discrete group delay spectrum y as an
observation vector to utilize its robustness to noise
[6]. The y is given by the inverse cosine transform
of quefrency-weighted cepstral coefficients:

y = Cdiag[l,2,---,ply°, (1)

where C represents the (p x p) cosine transform
matrix, and y° is a cepstral vector [c;,¢cq,- -, ¢;).
Furthermore, in a frequency-weighted HMM, in
order to utilize the robustness of group-delay spec-
trum and also to incorporate the human auditory
characteristics into HMM, the uncorrelated covari-
ance matrix of a single Gaussian HMM for the
sth state of cth class is replaced by the inverse of
frequency-weighting matrix derived from the mean
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vector as follows:

,wcsxv]_l ) (2)

where w.,; is a frequency weighting coefficient,
and p., a scale factor. The w,; is the smoothed
and compressed power spectrum derived from the
mean vector p ., as follows:

ch = P?;s d'la‘g [wcsl o

Wesg = exP{ﬂcslcsj}, (3)
[lcsl‘) ) lcsp]T =
. [1 1 -1
Cdla‘g _1'1 ’5,0,'”,0 C * sy (4)

and also, the w.;; was normalized so as to give

P
E’wcsj =1. (5)
=1

Thus, the weighting characteristics of each state is
controlled by (1) a scale factor p.s, (2) a compres-
sion/expansion factor f,,, and (3) a truncation or-
der ¢ for smoothing.

In the previous HMM-FW, the values of p., and
B.s for all classes and states were tied together.
As a result, the previous HMM-FW did not take
the spectral differences among mean vectors into
account.

In order to improve this limitation, p., and G.s
are trained independently of each class and state
based on a minimum error classification criterion.
The other parameter ¢ is set to 8 as in the previ-
ous HMM-FW ([8].

3. MINIMUM ERROR
CLASSIFICATION LEARNING
3.1. FError Criterion

First, we define the misclassification measure for
the nth training token y;, from the kth class as
follows:

A(Ypn»©) = — 10g (P(Yin, Y. | 6c))

Z P(Ypnryc|6c) } (6)

+ log
c,ctk

where vy, is the optimum Viterbi state sequence of
Yy, for the cth class, and 6. denotes the weighting
parameters of the cth model. In this study, the
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values of 7 and h are set to 2 and 5, respectively.
Using d(yy,,, ©), the total loss over Nj tokens from
each of K classes is given by

K N

Z > {d(yin, 0)), (7)

=1n=1

L(y,0) =

where /(d(yg,., ©)) is the cost function defined here
by

(dlysn,©)) = { g0 @ AN>0 )

otherwise.

3.2. Training Algorithm

First, we derive the previous HMM-FW from an
initial HMM trined by the Baum’s algorithm. We
calculate the matrix X, for each state using equa-
tions (2) to (5) and then replace the covariance
matrix of the initial model with X';;. With the
fixed X.,, the mean vector ., and transition
probabilities {a;;} are reestimated by Baum’s al-
gorithm until it converges.

Second, with the fixed p., and {a;;}, the p.s or
Bcs is separately modefied by MCE. At the nth
iteration of the gradient decent algorithm, the pa-
rameter © ({pcs} or {B.s}) is updated by the fol-
lowing equation:

O(n) O(n—1)-¢e(n)VL(y,0). (9)

In calculating VL(y,©(n)), we use the parame-
ter £.; = log p., instead of p.,, and the derivative
of the loss function [11] defined by

6l(d(yk,m®))_{1, if d()>0,
3d(y;,-0) ~ |0, otherwise.

The step size £(n) in equation (9) is controlled
as fallows:

é(n) (11)

where cos ¢y, n—1 is the directional cosine between
VIL(y,®(n)) and VL(y,0(n — 1)). By equation
(11), for cos ¢y n—1 close to 1, the update proceeds
in a similar direction and thus the step size is made
larger. But, for cos ¢,, ,,_1 close to -1, the previous
update might have passed an optimum point and
thus the step size is made smaller.

g(n —1)-20%¢nn-1,
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Table 1. Data and experimental conditions

Training 10 utterances
Testing 10 utterances
Noises Car noise, White noise
Speech babble noise, F16 noise
HMM 26 states
Recognition | Viterbi algorithm
Error Substitution

Table 2. Analysis conditions

Sampling Frequency | 16kHz

Window 25ms Hamming
Frame Period 10ms

Preemphasis Adaptive : (1-az7!)
Order of LPC 26

Spectral Parameter | 16 mel-Cepstral Coeff.

4. EVALUATION

4.1. Apeech Data and Analysis Conditions

In the following evaluation, the speech database
from NOISEX-92 and experimental conditions in
Table 1 were used. The analysis conditions are
summarized in Table 2. The white noise was gen-
erated in a computer, and was added to clean
speech so that the global SNR for each word is
equal to a predetermined value. In testing, the Vi-
tarbi algorithm was used with fixing the beginning
and end points to those in the label files. Thus,
only substitution errors were scored.

4.2. Robustness to closed noise conditions

First, the robustness of the following HMMs were
compared under various levels of white and car
noises:

(1) A conventional HMM with a single diagonal
covariance trained by a maximum likelihood
method using clean speech(HMM-M1).

(2) The previous frequency-weighted HMM
(HMM-FW) derived from the HMM-MI,
where the parameters 3 were set to 0.6 for
white noise and 0.4 for car noise, respectively.

(3) An HMM-FW with the scales p., trained by
MCE using noisy speech at 0dB SNR of white
noise and at -6dB of car noise from the initial
models of HMM-FW (MCE-p).
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Table 3. Effects of MCE for white noise [%)

Type of " Test SNR [dB]

HMMs [ o | 6 J12 |18 |24 | CL
HMM-M1 10 20 44 69 97 100
HMM-FW 52 86 100 | 100 | 100 | 100

MCE-p 90 | 100 | 100 | 100 | 100 | 100

MCE-G 88 99 100 | 100 | 100 | 100

Table 4. Effects of MCE for car noise [%)]

Type of “ Test SNR [dB]
HMMs fl 6] o] 6 [12] 18 [cL

HMM-M1 29 | 54 | 93 | 100 | 100 | 100
HMM-FW || 50 | 84 | 100 | 100 | 100 | 100
MCE-p 63 | 94 | 100 | 100 | 100 | 100
MCE-38 61 | 92 {1 100 | 100 | 100 | 100

(4) An HMM-FW with ., trained by MCE under
the same conditions as in MCE-p (MCE-g).

The recognition accuracy for four HMMs are
shown in Table 3 and 4. From these tables, the re-
sults are summarized as follows: MCE-p achieves
13 to 38% higher accuracy at 6 to 0dB of white
noise, and 8 to 13% higher accuracy at 0 to -6dB
SNR of car noise than the previous HMM-FW.
MCE-g attains almost the same recognition accu-
racy as MCE-p.

4.3. Robustness to open noise conditions

Finally, the conventional HMM with three mix-
tures per state (HMM-M3) and MCE-p were
trained using 30 speech samples per digit that con-
tained 10 speech samples under each of three con-
ditions: noise-free, white noise of 0 dB SNR, and
car noise of -6dB SNR. The recognition perfor-
mance of both HMMs were compared for the open
noise conditions of speech and F16 noises as well
as for the closed noise conditions of white and car
noise.

Tables 5 to 8 show the results. The recognition
accuracy for MCE-p is lower than that of HMM-
M3 under the same noise condition that is included
in the training, but for open conditions — especially
under speech and F16 noise - MCE-p proved to be
significantly superior to HMM-M3.
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Table 5. Gaussian white noise [%)
Type of Test SNR {dB]
HMM:s o [ e f12]18]24 |CL
HMM-M3 100 99 95 97 100 | 100
MCE-p 89 100 | 100 | 100 | 100 | 100

Table 6. Car noise (%]

Type Test SNR [dB]
of HMM | -6 [ o | 6 |12 [ 18 [ CL
HMM-M3 99 | 100 { 100 | 100 | 100 | 100
MCE-p 78 99 100 | 100 | 100 | 100

Table 7. Speech babble noise [%)]

Type of Test SNR [dB]

HMMs -6 0L6]12 [18|CL
HMM-M3 || 29 | 35 | 76 | 100 | 100 | 100
MCE-p |l 35 |68 |97 {100 | 100 | 100

Table 8. F16 aircraft noise [%)]
Type of Test SNR [dB]
HMMs |6 J o | 6 J12] 18| cL
HMM-M3 10 | 16 | 26 | 77 | 100 | 100
MCE-p 19 { 36 | 66 | 87 | 100 | 100

5. CONCLUSION

This paper has shown that the MCE-trained
frequency-weighted HMM achieves high robust-
ness for a wide variety of noise levels and noise
spectra. It should be noted that the mean vec-
tors of the frequency-weighted HMM are fixed to
those of clean speech. Therefore, we can expect
further robustness of MCE-p by combining some
noise compensation or noise reduction technique
in the front end.

In future work, this frequency-weighted HMM
will be extended to HMMs with mixture compo-
nents, and its simultaneous optimization of differ-
ent weighting parameters will be examined using
a larger database.

REFERENCES

[1] P-Lockwood and J.Boudy, ”Experiments with
a nonlinear spectral subtractor (NSS), hidden
Markov models, and the projection for robust

Copyright 1997 IEEE

speech recognition in cars,” Speech Communi-
cation, pp.215-228, 1992.

(2] Y.Ephraim, ”Gain-adapted Hidden Markov
Models for recognition of clean and noisy
speech”, IEEE Transactions On Signal Pro-
cessing, Vol 40, No.6, pp.1303-1316,(1992-6)

[3] A.P.Varga and R.K.Moore, "Hidden Markov
Model decomposition of speech and noise”,
Proc. IEEE ICASSP, pp.845-848, (1990)

[4] M.J.F. Gale and S.J. Young, ”Cepstral pa-
rameter compensation for HMM recognition
in noise,” Speech Communication, 12, pp.231-
240, 1993.

[5] B.A.Hanson and H.Wakita, "Spectral slope
distance measures with linear prediction analy-
sis for word recognition in noise”, IEEE Trans.
Acoust., Speech & Signal Process., ASSP-35,7,
pp-968-973, (1987-7)

(6] F.Itakura and T.Umezaki, ”Distance measure
for speech recognition based on the smoothed
group delay spectrum,” in Proc. ICASSP, Dal-
las, pp.1257-1260, Apr. 1987.

[7] H.Matsumoto and H.Mitsui, ”A robust dis-
tance measure based on group delay difference
weighted by power spectra”, in Proc. ICSLP-
90, Kobe, pp.267-270, Nov. 1990.

[8] H.Matsumoto and H.Imose, "A frequency-
weighted continuous density HMM for noisy
speech recognition”, in Proc. ICSLP-94, Yoko-
hama, pp.1007-1010, Sep. 1994.

[9] H.Matsumoto and N.Naitoh, »Smoothed spec-
tral subtraction for a frequency-weighted
HMM in noisy speech recognition,” in Proc.
ICSLP-96, Philadelphia, pp.905-908, Sep.
1996.

[10] B.H.Juang and S.Katagiri,”Discriminative
Learning for Minimum Error Classification”,
IEEE Trans. Signal Processing, vol.40, no.12,
pp.3043 - 3054,(1992.12).

[11] Kazumi Ohkura, David
Rainton and Masahide Sugiyama, ”Noise-
Robust HMMs Based on Minimum Error Clas-
sification”, Proc. of ICASSP93, pp.II-75-1I-
77,(1993).

1514



