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ABSTRACT

In this paper, we investigate a new Bayesian predic-
tive classification (BPC) approach to realize robust speech
recognition when there exist mismatches between train-
ing and test conditions but no accurate knowledge of the
mismatch mechanism is available. A specific approximate
BPC algorithm called Viterbi BPC (VBPC) is proposed
for both isolated word and continuous speech recognition.
The proposed VBPC algorithm is compared with conven-
tional Viterbi decoding algorithm on speaker-independent
isolated digit and connected digit string (TIDIGITS) recog-
nition tasks. The experimental results show that VBPC can
considerably improve robustness when mismatches exist be-
tween training and testing conditions.

1. INTRODUCTION

Although many advances have recently been achieved in
automatic speech recognition, it is also found that the per-
formance of a speech recognizer always degrades drastically
whenever some acoustic mismatches between testing and
training conditions exist. Today the dominant method to
deal with these mismatches is to compensate the feature
vectors or speech models in order to remove or reduce the
mismatches between testing data and trained models (e.g.
[1], [7], etc.). In the compensation approach, some prior
knowledge about the mechanism of mismatches is necessary
to design a suitable form of mapping function. In practice,
we generally have no idea about the sources of variability in
speech signal, and no full knowledge to figure out the mech-
anism of mismatches between training data in the labora-
tory and testing data in real field. In the extreme case, the
only available information is the test data along with 2 set
of pre-trained speech models. Some recent approaches have
focused on modifying the decision rule and the model pa-
rameters so that part of the mismatch can be compensated
and the decision performance can be improved. This scheme
becomes a potential approach for robust speech recognition
because it need not make rigid assumptions about sources
of distortion. One such approach is the minimaz classifica-
tion algorithm [4] which assumes the best decision parame-
ters for the given test data lie in the neighborhoods of the
given parameters and adjustis the decision rule and the cor-
responding parameters accordingly. The minimax classifi-
cation is thus geared to protect against the possibility of the
worst mismatch. The main disadvantage of the minimax
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approach is that it usually do not perform nearly as well
as in a less malign situation and/or those techniques which
use some prior information of the possible mismatches. An-
other disadvantage is that it can not be extended easily to
perform continuous speech recognition (CSR) because the
combination of uncertainty neighborhoods surrounding the
model parameters that need to be examined can become
quite large[4, 6].

In this paper and [3], we investigate a new Bayesian
predictive classification (BPC) approach to realize robust
speech recognition when unknown mismatches exist be-
tween training and testing conditions. A specific approx-
imate BPC algorithm called Viterbi BPC (VBPC) which
aims at mitigating to some extent the above-mentioned dif-
ficulties of the minimax approach, is proposed in this pa-
per. We apply the proposed VBPC framework to robust
speaker independent recognition of Japanese isolated digits
and TIDIGITS English connected digit strings under the
mismatch caused by additive Gaussian white noise where
each digit is modeled with a Gaussian mixture continu-
ous density hidden Markov model (CDHMM). Our experi-
mental results show that the proposed VBPC rule achieves
considerable improvement in various signal-to-noise ratios
(SNR) over the conventional Viterbi decoding in both tasks.

The remainder of the paper is organized as follows. In
section 2, the basic principle of the BPC rule is briefly intro-
duced. In section 3, the formulation of VBPC for CDHMM
is presented. In section 4, a series of comparative exper-
iments on isolated /connected digits recognition tasks are
reported. Finally, our findings are summarized in section 5.

2. BAYESIAN PREDICTIVE
CLASSIFICATION APPROACH

In a companion paper [3], we discuss how to apply the gen-
eral BPC to CDHMM-based robust speech recognition, its
relations to the conventional plug-in mazimum a posteriori
(MAP) decision rule and minimax decision rule, and finally
focus on another approximate BPC method called gquast-
Bayesian predictive classification (QBPC). In this paper,
we focus our study on VBPC approach. Whenever possi-
ble, we use the same notations as those in [3].

Let’s view a word W' and the associated acoustic obser-
vation X (usually, a feature vector sequence) as a jointly

1Depend on the problem of interest, word here could be any
linguistic unit, such as a phoneme, a syllable, a word, a phrase,
etc.
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distributed random pair (W,X). The proposed BPC rule
[3] assumes some prior knowledge (albeit crude) about the
possible mismatch, and at the same time takes into account
its uncertainty in decision parameters. Only acoustic mod-
els are adjusted in this study. We use a prior PDF (proba-
bility density function) p(A|p) to represent our knowledge
about the uncertainty of the unknown CDHMM parameters
A (e.g. [2]). The BPC rule to obtain the recognition result,
W, is then

W = argmax 5(W|X) = arg max 5(X|W) - p(W) (1)

where
HXIW) = / §(XIA Wp(Alp, W)A  (2)

is called the predictive PDF of the observation X given the
word W. The computation of this predictive PDF is the
most difficult part of the BPC procedure.

3. VITERBI BAYESIAN PREDICTIVE
CLASSIFICATION (VBPC)

In the CDHMM case, due to the nature of the missing data
problem in HMM formulation (see related discussions in
[2, 3]), it 18 not easy to compute the true predictive density:

SXIW) = 3 [ oK, 18, WAl W)A (3

sl

where 8 is the unobserved state sequence and 1is the asso-
ciated sequence of the unobserved mixture, component la-
bels corresponding to the observation sequence X. Conse-
quently, some approximations are needed [3].

One way to compute the approximate predictive PDF is
to use the following Viterbi approximation:

P(X|W) =~ n;aix/p(x,s, IA, W)p(Alp, W)dA  (4)

The resultant BPC rule is named as VBPC rule.

We adopt the same notations as those in [2] and denote
an N-state CDHMM with parameter vector A = (7, 4, 9),
where 7 is the initial state distribution, A is the state tran-
sition matrix, and 8 is the parameter vector composed of
mixture parameters 8; = {wir, Mix, Tin } for each state i with
the state observation PDF being a mixture of multivariate
Gaussians:

(x|8:) = Z:;weh)\/(xlmiu, Tir), (5)

where the mixture coeflicients w;s’s satisfy the constraint
E:‘__,lw.-p. = 1, and N(x|mix,rin) is the k-th normal mixand
with m;, being the D-dimensional mean vector and r;; be-
ing the D x D precision (inverse covariance) matrix. Given
a test utterance X = (z;, 22, -+, z1), the Viterbi Bayesian
procedure for approzimately ? computing the approximate
predictive PDF in equation (4) is described as follows:

2Strictly speaking, the following search algorithm can not
completely warrant the eq.(4) in theory because the partial pre-
dictive value (i.e. ;) will possibly be re-computed partially in
€q.(13) during search.

Copyright 1997 |IEEE

(1) Initialization
61(3) = ;- bi(z1) 1<i<N (6)

§3(i) =% and $1(i)=0 1<i<N (7)

where #; denotes the mean of the prior PDF of the
HMM parameter ;.

(2) Recursion: for2<t<T,1<j <N, do

Bi(7) = max, [Sena() - i) (®)
$e(j) = arg R [ 6e-1(3) - &ij) (9)

where @}; is the mean of the posterior PDF of the ai;
based on the optimal partial path up to the time in-
stant 2. i.e.

fori#j
fori=j

(10)

" { i
a‘“ = L. L;—1
J a3 =3
a;; /“.-j

where G;; denotes the mean of the prior PDF of the
HMM parameter a;;, and @7; correspondingly denotes
the nth order moment of a;;.

if § # ¥¢(7), then

8 (5) = 6:(5) (11)
8e(3) = 6:(3) x bj(=) (12)
else (i.e. j = ¥(4))
. 4 35 a5 )(2 3; )Ly
6:(3) = BN, 2t ) x
62__1,]..“_(]') X &;;J_l (13)
where z{*)%) means that z¢ 18 the jth vector in
t

the state ¢ and L; is the accumulated number of
feature vectors belonging to state j; based on the
optimal partial path up to the time instant ¢.

(8) Termination

B(X|W) ~ max 62(3) (14)

s = arg max §7(3) (15)
(4) Path (state sequence) Backtracking

8:=1’1:+1(l:+1) t=T—1,T—2,"',1 (16)
The meaning of b;(-) will be explained later.

In this paper, as the first step, we only consider the uncer-
tainty of the mean vectors of CDHMM with diagonal covari-
ance matrices and assume they are uniformly distributed in
the neighborhoods of pre-trained means. The same uncer-
tainty neighborhood shape as in [4] is adopted here:

7A) = {A | m = 7], a5 = afj,win = wi),
ik = ik, [Ming — mika] < Cd71p%,
1<i<N,1<k<K,1<d< D} (17)
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where hyperparameters C (C > 0) and p (0 < p < 1) are
used to control respectively the possible mismatch size and
shape, and {x],a];, miy4,7{,} denote the pre-trained model
parameters.

We then have

D
bi(zs) = wiry -f'u;(ze) = wirs II fn:a(ha) (18)

d=1

where I} is the mixture component label to which z: is
“closest”, and

E‘(”(:'—'.}.(-l-')-n (t.,}l(‘z*)-’

Hw

h=1

H ck H f"'d(zl"d’

where z('_‘},( _,),1, zﬁ'_"},(fl,, SRR

belonging to state i in X, among which IF-..

, z:(tle)(l'i))

f-k(”!*» ”1:, )
»

z,;. d) (19)

zg")(L") denote feature vectors
12;. denote
labels of the vectors “closest” to the mixture component k
of state 1. Then, with m,,; and rj,, being the pre-trained
mean and precision parameters respectively, we have

Fina(ra, 224, -, 2¢a) = ( ‘M)’ ) ﬁl—
'm: +ca=1pt -
/ " e—-%"iu[25=1(°“-m"“)2] dmikd
my —Cd—1pt
L'
|kd
= (TM ( ey

{‘I’(V (Tiha (""ikd —Z¢at Cd_lf’d)) -
&(\ /(i (ming — Fea — Cd™"p%))} (20)

<1>(y)=\/L2_T-/_:e-%°-dz

¥ = exp{— %CT{'M[?Z: ~ (Z¢a)']}

where

and

with 27, = § L, oy nd s = 1 T, 7
4. EXPERIMENTS AND RESULTS

In order to examine the viability of the proposed VBPC
algorithm, VBPC is used to perform speaker-independent
(SI) recognition of isolated and connected digits, on an iso-
lated Japanese digit database and TIDIGITS English con-
nected digit-string database respectively. In the following
experiments, the unknown mismatch is caused by additive
Gaussian white noise on the test data. While SI training
is performed on clean speech data, in the testing phase,
computer-generated Gaussian white noise, with various lev-
els of intensity, is added to the original speech waveform
prior to the preprocessing {4]. The degree of mismatch is
measured by SNR level (dB) of the contaminated speech,
which is calculated averagely over the whole testing set. No
knowledge of the above mismatch is explicitly used in test-
ing phase.
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Figure 1. Performance (word accuracy in %) com-
parison of Viterbi with VBPC at various SNR

Table 1. Recognition accuracy (in %) as a function
of neighborhood parameters C and p at SNR=34 dB
(Viterbi attains 57.5% correct rate at this SNR)

C\p 0.1 0.2 0.3 0.4 0.8 0.6 0.7 0.8
1 57.9 57.9 56.7 57.1 56.3 57.9 63.3 65.8
2 587.5 56.7 56.7 63.3 65.0 71.3 732.9 73.3
3 87.1 56.7 | 64.2 67.5 68.8 76.3 7.9 79.6
4 56.7 60.4 67.9 69.6 77.1 76.7 76.7 84.6
5 57.9 66.7 | 69.6 74.2 75.4 74.2 79.3 85.8
6 558 67.5 74.2 74.2 73.3 74.3 81.3 85.8
7 58.8 67.9 732.9 73.3 70.0 75.4 80.4 82.1
[ 60.4 70.4 71.3 71.3 70.4 76.3 85.8 79.6
9 63.8 72.5 | €9.2 74.6 70.4 78.3 85.8 74.3
10 68.7 75.4 72.1 73.8 73.1 80.0 85.4 68.3
11 68.3 75.8 70.4 70.8 73.5 78.8 86.7 61.3
12 66.7 78.0 71.3 69.3 70.0 80.4 84.6 £9.6
13 67.1 71.3 73.9 685.8 72.5 81.3 84.6 53.9
14 68.8 6.6 | 71.7 68.8 75.4 82.1 80.8 49.6
15 68.3 69.2 | 72.1 68.8 74.6 81.7 80.4 41.7
16 67.9 66.3 73.8 68.3 78.4 20.8 79.6 39.6
17 688 66.7 | 74.2 69.6 76.3 80.8 7.9 40.8
18 73.1 66.7 | 73.9 70.0 77.1 82.5 76.7 34.6
19 71.7 | 6.3 73.8 70.4 76.7 83.3 75.8 36.3
20 71.7 68.8 71.3 73.1 76.7 85.4 73.9 31.3

4.1. Isolated Digit Recognition

The data is selected from ATR Japanese Speech Database.
It contains 0-9 Japanese digit utterances from 60 speak-
ers (half male, half female). The speech was recorded in
a quiet environment at sampling rate of 20kHz with 16bit
quantization. Fach digit is modeled by a left-to-right 4-
state CDHMM without state skipping and each state has
6 Gaussian mixture components with diagonal covariance
matrices. Each feature vector consists of 16 LPC-derived
cepstral coefficients. For each digit, in total, we have 56
tokens from 46 speakers for SI training, and 24 tokens from
other 14 different speakers for SI testing.

Figure 1 compares the averaged recognition accuracy of
the VBPC algorithm with that of standard Viterbi algo-
rithm at various SNR levels. The experimental results show
that VBPC generally achieves more than 20% recognition
rate improvement over that of the conventional Viterbi de-
coding at various SNR levels. Furthermore, a similar be-
havior as in minimax approach [4] that the recognition per-
formance tends to be relatively insensitive to the shape of
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Table 2. Recognition accuracy (in %) as a function
of neighborhood parameters C and p on clean data.
(Viterbi attains 88.8% correct rate here)

C\ps | 012 0.3 0.3 0.4 0.8 0.6 0.7 0.8
1 28.8 98.3 99.2 99.3 98.8 98.8 99.2 99.2
2 99.2 99.2 99.2 99.2 98.8 98.3 98.8 58.8
3 99.2 98.8 99.2 99.2 98.3 98.3 98.8 97.9
4 29.2 $9.2 99.2 99.2 98.3 97.8 97.8 97.5
5 99.2 99.2 98.8 98.3 93.8 97.9 96.7 96.7
L] 9.2 98.8 98.8 98.8 98.3 97.1 98.2 93.9
7 99.2 98.8 99.2 98.8 97.9 96.7 96.3 90.8
8 99.2 98.8 $8.8 98.8 97.8 96.3 95.4 84.6
9 99.68 98.8 $8.3 98.3 97.8 98.4 94.2 79.2
10 99.3 99.2 98.3 7.8 96.7 95.8 23.8 77.9
11 98.8 99.6 98.8 27.8 96.7 5.4 93.9 74.3
13 98.3 99.2 98.3 97.9 97.8 95.4 91.3 64.2
13 98.8 98.8 97.8 96.7 96.3 94.2 88.6 64.6
14 98.3 99.2 97.8 96.7 97.1 98.0 90.0 59.2
15 98.8 98.8 97.8 297.5 98.7 94.8 87.5 53.3
16 98.8 98.8 96.7 87.8 97.1 83.3 86.7 49.6
17 28.8 98.3 927.8 97.1 $7.1 94.6 a7.9 48.3
18 99.2 97.9 27.1 97.1 97.1 94.86 82.9 45.4
19 99.2 97.5 97.5 97.1 96.3 92.8 80.8 42.9
20 98.8 97.9 97.1 96.3 5.4 90.4 76.7 37.8

uncertainty regions and the performance holds up well un-
der a wide range of SNR values, is also observed in VBPC.
As an example, we list the recognition performance as a
function of neighborhood parameters C and p at SNR=34
dB (mismatched case) and clean data (matched case) in
Tables 1 and 2 respectively. Strictly speaking, the perfor-
mance of VBPC depends on the appropriate choice of p and
C, which in turn depends on the unknown amount of mis-
match. However, the results in Tables 1 and 2 show that
considerable improvement (though not optimal) can be ob-
tained in a fairly large range of design parameters (p, C),
thus suggests that exact knowledge of p and C is not crucial.

4.2. Connected Digits Recognition

In contrast with minimax approach, VBPC possesses the
intrinsic nature of recursive search, thus VBPC can easily
be extended to continuous speech recognition, but with the
cost of more computations. VBPC is examined on TIDIG-
ITS corpus which contains utterances from a total of 326
speakers. The SI model for each digit is a 10-state, 10-
mixture-per-state CDHMM. The feature vector consists of
12 LPC-derived cepstral coefficients, energy, and their delta
features. Because we only consider the uncertainty of Gaus-
sian means in this study, we ignored the contribution of
the pre-trained mixture coefficients in VBPC decoding and
we found this leads to a better performance in connected
digit recognition case. The recognition results of VBPC
on TIDIGITS for several SNR levels are listed in Table 3,
where Str stands for string correct rate, Wd-C for word
correct rate, Wd-A for word accuracy, Del, Sub and Ins
for deletion, substitution and insertion error rate respec-
tively.> The experimental results show that by using VBPC
algorithm, overall recognition performance, say, word(digit)
correct rate, is improved about 10% absolutely over that of
normal Viterbi decoding.

3All of these recognition statistics are computed by using
HTK.
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Table 3. Performance(in %) comparison of Viterbi
and VBPC on TIDIGITS corpus

[SNR ] [ Str [ Wd-C | Wd-A | Del | Sub | Ins |
oo | Viterbi | 90.0 | 98.9 | 97.8 | 0.3 | 0.8 | 12
VBPC | 89.5 | 98.7 | 976 | 04 | 09 | 1.1

36.8 | Viterbi | 17.8 | 67.6 | 66.4 | 16.1 | 16.4 | 1.1
(dB) [[VBPC | 370 | 794 | 776 | 83 | 123 | 1.8
27.3 | Viterbi | 0.2 | 45.2 | 438 | 25.2 | 20.7 | 1.4
(dB) [ VBPC | 1.2 | 531 | 46.4 | 17.7 | 29.2 | 3.7
16.8 | Viterbi | 0.0 | 25.1 | 24.0 | 45.2 | 20.7 | 1.0
(dB) [ VBPC | 0.0 | 37.8 | 32.7 | 20.8 | 41.4 | 5.1

5. DISCUSSION AND CONCLUSION

The above experimental results clearly show that robustness
is considerably improved by using VBPC in both isolated
word and continuous speech recognition when mismatch ex-
ists between test and training conditions. Generally speak-
ing, in the case of less confusable vocabulary where the
speech models are distinct enough (ideally no overlap), to
use a less informative prior distribution such as the uni-
form distribution we adopted in this study will not cause
any problem. Furthermore, it might be beneficial when the
mismatch neighborhood described by this prior distribution
happens to be consistent with the real mismatch which is
the case for additive Gaussian white noise in this study. So
the effect of the VBPC decoding is especially pronounced
in our experiments. It will be interesting to see how the
current VBPC formulation works in other cases of more
confusable vocabulary and/or more general unknown mis-
matches. We are still investigating these issues and will
report those results in future.
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